Accurate diagnosis of the brain tumor type at an earlier stage is crucial for the treatment process and helps to save the lives of a large number of people worldwide. Because they are non-invasive and spare patients from having an unpleasant biopsy, ...
BACKGROUND: Meningiomas are common intracranial tumors. Machine learning (ML) algorithms are emerging to improve accuracy in 4 primary domains: classification, grading, outcome prediction, and segmentation. Such algorithms include both traditional ap...
PURPOSE: This study aimed to investigate the effectiveness and practicality of using models like convolutional neural network and transformer in detecting and precise segmenting meningioma from magnetic resonance images.
PURPOSE: This study aims to combine deep learning features with radiomics features for the computer-assisted preoperative assessment of meningioma consistency.
BACKGROUND: Brain tumor is a grave illness causing worldwide fatalities. The current detection methods for brain tumors are manual, invasive, and rely on histopathological analysis. Determining the type of brain tumor after its detection relies on bi...
A meningioma is a common primary central nervous system tumor. The histological features of meningiomas vary significantly depending on the grade and subtype, leading to differences in treatment and prognosis. Therefore, early diagnosis, grading, and...
BACKGROUND: This study aimed to establish a dedicated deep-learning model (DLM) on routine magnetic resonance imaging (MRI) data to investigate DLM performance in automated detection and segmentation of meningiomas in comparison to manual segmentatio...
To address the challenge of meningioma grading, this study aims to investigate the potential value of peritumoral edema (PTE) regions and proposes a unique approach that integrates radiomics and deep learning techniques.The primary focus is on develo...