BACKGROUND: Dementia, with Alzheimer's disease (AD) being the most common type of this neurodegenerative disease, is an under-diagnosed health problem in older people. The creation of classification models based on AD risk factors using Deep Learning...
Brain age, most commonly inferred from T1-weighted magnetic resonance images (T1w MRI), is a robust biomarker of brain health and related diseases. Superior accuracy in brain age prediction, often falling within a 2-3 year range, is achieved predomin...
The purpose of this study is to develop a lightweight and easily deployable deep learning system for fully automated content-based brain MRI sorting and artifacts detection. 22092 MRI volumes from 4076 patients between 2017 and 2021 were involved in ...
The major issue faced by elderly people in society is the loss of memory, difficulty learning new things, and poor judgment. This is due to damage to brain tissues, which may lead to cognitive impairment and eventually Alzheimer's. Therefore, the det...
Journal of magnetic resonance imaging : JMRI
Oct 31, 2023
Gadolinium contrast is an important agent in magnetic resonance imaging (MRI), particularly in neuroimaging where it can help identify blood-brain barrier breakdown from an inflammatory, infectious, or neoplastic process. However, gadolinium contrast...
BACKGROUND: Multivoxel pattern analysis (MVPA) examines fMRI activation patterns associated with different cognitive conditions. Support vector machines (SVMs) are the predominant method in MVPA. While SVM is intuitive and easy to apply, it is mainly...
This study aimed to evaluate the ability of deep learning reconstruction (DLR) compared to that of hybrid iterative reconstruction (IR) to depict small vessels on computed tomography (CT). DLR and two types of hybrid IRs were used for image reconstru...
Conventional cognitive assessment is widely used in clinical and research settings, in educational institutions, and in the corporate world for personnel selection. Such approaches involve having a client, a patient, or a research participant complet...
BMC medical informatics and decision making
Oct 18, 2023
BACKGROUND: Saliency-based algorithms are able to explain the relationship between input image pixels and deep-learning model predictions. However, it may be difficult to assess the clinical value of the most important image features and the model pr...
PURPOSE: The aim of this study is to develop a deep neural network to diagnosis Alzheimer's disease and categorize the stages of the disease using FDG-PET scans. Fluorodeoxyglucose positron emission tomography (FDG-PET) is a highly effective diagnost...