AIMC Topic: Neuropsychological Tests

Clear Filters Showing 11 to 20 of 189 articles

A Machine Learning Approach to Predict Cognitive Decline in Alzheimer Disease Clinical Trials.

Neurology
BACKGROUND AND OBJECTIVES: Among the participants of Alzheimer disease (AD) treatment trials, 40% do not show cognitive decline over 80 weeks of follow-up. Identifying and excluding these individuals can increase power to detect treatment effects. We...

Automatic Detection of Cognitive Impairment in Patients With White Matter Hyperintensity Using Deep Learning and Radiomics.

American journal of Alzheimer's disease and other dementias
White matter hyperintensity (WMH) is associated with cognitive impairment. In this study, 79 patients with WMH from hospital 1 were randomly divided into a training set (62 patients) and an internal validation set (17 patients). In addition, 29 WMH p...

Neuropsychological tests and machine learning: identifying predictors of MCI and dementia progression.

Aging clinical and experimental research
BACKGROUND: Early prediction of progression in dementia is of major importance for providing patients with adequate clinical care, with considerable impact on the organization of the whole healthcare system.

Dementia Overdiagnosis in Younger, Higher Educated Individuals Based on MMSE Alone: Analysis Using Deep Learning Technology.

Journal of Korean medical science
BACKGROUND: Dementia is a multifaceted disorder that affects cognitive function, necessitating accurate diagnosis for effective management and treatment. Although the Mini-Mental State Examination (MMSE) is widely used to assess cognitive impairment,...

Prediction of cognitive conversion within the Alzheimer's disease continuum using deep learning.

Alzheimer's research & therapy
BACKGROUND: Early diagnosis and accurate prognosis of cognitive decline in Alzheimer's disease (AD) is important to timely assignment to optimal treatment modes. We aimed to develop a deep learning model to predict cognitive conversion to guide re-as...

Predicting conversion in cognitively normal and mild cognitive impairment individuals with machine learning: Is the CSF status still relevant?

Alzheimer's & dementia : the journal of the Alzheimer's Association
INTRODUCTION: Machine learning (ML) helps diagnose the mild cognitive impairment-Alzheimer's disease (MCI-AD) spectrum. However, ML is fed with data unavailable in standard clinical practice. Thus, we tested a novel multi-step ML approach to predict ...

Machine learning models for dementia screening to classify brain amyloid positivity on positron emission tomography using blood markers and demographic characteristics: a retrospective observational study.

Alzheimer's research & therapy
BACKGROUND: Intracerebral amyloid β (Aβ) accumulation is considered the initial observable event in the pathological process of Alzheimer's disease (AD). Efficient screening for amyloid pathology is critical for identifying patients for early treatme...

Predicting cognitive decline from neuropsychiatric symptoms and Alzheimer's disease biomarkers: A machine learning approach to a population-based data.

Journal of Alzheimer's disease : JAD
BACKGROUND: The aim of this study was to examine the potential added value of including neuropsychiatric symptoms (NPS) in machine learning (ML) models, along with demographic features and Alzheimer's disease (AD) biomarkers, to predict decline or no...

Explainable machine learning on clinical features to predict and differentiate Alzheimer's progression by sex: Toward a clinician-tailored web interface.

Journal of the neurological sciences
Alzheimer's disease (AD), the most common neurodegenerative disorder world-wide, presents sex-specific differences in its manifestation and progression, necessitating personalized diagnostic approaches. Current procedures are often costly and invasiv...

A deep learning approach for automated scoring of the Rey-Osterrieth complex figure.

eLife
Memory deficits are a hallmark of many different neurological and psychiatric conditions. The Rey-Osterrieth complex figure (ROCF) is the state-of-the-art assessment tool for neuropsychologists across the globe to assess the degree of non-verbal visu...