OBJECTIVES: Hepatic arterial infusion chemotherapy (HAIC) using the FOLFOX regimen (oxaliplatin plus fluorouracil and leucovorin) is a promising option for advanced hepatocellular carcinoma (Ad-HCC). As identifying patients with Ad-HCC who would obta...
RATIONALE AND OBJECTIVES: Accurately assessing epidermal growth factor receptor (EGFR) mutation status in head and neck squamous cell carcinoma (HNSCC) patients is crucial for prognosis and treatment selection. This study aimed to construct and valid...
AIM: To develop a novel combined nomogram based on deep-learning-assisted computed tomography (CT) texture (DL-TA) and clinical-radiological features for the preoperative prediction of invasiveness in patients with clinical stage IA lung adenocarcino...
BACKGROUND: To explore the value of a multiparametric magnetic resonance imaging (MRI)-based deep learning model for the preoperative prediction of Ki67 expression in prostate cancer (PCa).
Journal of magnetic resonance imaging : JMRI
Jul 1, 2023
BACKGROUND: Deep stromal invasion (DSI) is one of the predominant risk factors that determined the types of radical hysterectomy (RH). Thus, the accurate assessment of DSI in cervical adenocarcinoma (AC)/adenosquamous carcinoma (ASC) can facilitate o...
OBJECTIVES: To develop and validate a CT-based deep learning radiomics nomogram (DLRN) for outcome prediction in clear cell renal cell carcinoma (ccRCC), and its performance was compared with the Stage, Size, Grade, and Necrosis (SSIGN) score, the Un...
PURPOSE: We created a clinically applicable nomogram to predict locally advanced prostate cancer using preoperative parameters and performed external validation using an external independent validation cohort.
To investigate whether the combination scheme of deep learning score (DL-score) and radiomics can improve preoperative diagnosis in the presence of micropapillary/solid (MPP/SOL) patterns in lung adenocarcinoma (ADC). A retrospective cohort of 514 co...
Journal of applied clinical medical physics
May 30, 2023
To develop a noninvasive machine learning (ML) model based on energy spectrum computed tomography venography (CTV) indices for preoperatively predicting the effect of intravenous thrombolytic treatment in lower limbs. A total of 3492 slices containin...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.