Neural networks : the official journal of the International Neural Network Society
Aug 28, 2021
A data-based value iteration algorithm with the bidirectional approximation feature is developed for discounted optimal control. The unknown nonlinear system dynamics is first identified by establishing a model neural network. To improve the identifi...
Neural networks : the official journal of the International Neural Network Society
Aug 25, 2021
In this paper, an event-triggered control (ETC) method is investigated to solve zero-sum game (ZSG) problems of unknown multi-player continuous-time nonlinear systems with input constraints by using adaptive dynamic programming (ADP). To relax the re...
The paper develops the adaptive dynamic programming toolbox (ADPT), which is a MATLAB-based software package and computationally solves optimal control problems for continuous-time control-affine systems. The ADPT produces approximate optimal feedbac...
Emerging applications of autonomous robots requiring stability and reliability cannot afford component failure to achieve operational objectives. Hence, identification and countermeasure of a fault is of utmost importance in mechatronics community. T...
Based on the type-II fuzzy logic, this paper proposes a robust adaptive fault diagnosis and fault-tolerant control (FTC) scheme for multisensor faults in the variable structure hypersonic vehicles with parameter uncertainties. Type-II fuzzy method ap...
IEEE/ACM transactions on computational biology and bioinformatics
Aug 6, 2021
An outbreak of COVID-19 that began in late 2019 was caused by a novel coronavirus(SARS-CoV-2). It has become a global pandemic. As of June 9, 2020, it has infected nearly 7 million people and killed more than 400,000, but there is no specific drug. T...
IEEE transactions on neural networks and learning systems
Aug 3, 2021
Studies of structural connectivity at the synaptic level show that in synaptic connections of the cerebral cortex, the excitatory postsynaptic potential (EPSP) in most synapses exhibits sub-mV values, while a small number of synapses exhibit large EP...
We use the recent advances in Deep Learning to solve an underwater motion planning problem by making use of optimal control tools-namely, we propose using the Deep Galerkin Method (DGM) to approximate the Hamilton-Jacobi-Bellman PDE that can be used ...
IEEE transactions on neural networks and learning systems
Jul 6, 2021
This brief presents an intrinsic plasticity (IP)-driven neural-network-based tracking control approach for a class of nonlinear uncertain systems. Inspired by the neural plasticity mechanism of individual neuron in nervous systems, a learning rule re...
IEEE transactions on neural networks and learning systems
Jul 6, 2021
We propose an efficient neural network for solving the second-order cone constrained variational inequality (SOCCVI). The network is constructed using the Karush-Kuhn-Tucker (KKT) conditions of the variational inequality (VI), which is used to recast...