We aimed to assess the feasibility of machine learning (ML) algorithm design to predict proliferative vitreoretinopathy (PVR) by ophthalmologists without coding experience using automated ML (AutoML). The study was a retrospective cohort study of 506...
PURPOSE: Rule-based approaches to determining glaucoma progression from visual fields (VFs) alone are discordant and have tradeoffs. To detect better when glaucoma progression is occurring, we used a longitudinal data set of merged VF and clinical da...
PURPOSE: Infiltration of activated dendritic cells and inflammatory cells in cornea represents an important marker for defining corneal inflammation. Deep transfer learning has presented a promising potential and is gaining more importance in compute...
PURPOSE: To compare the performance of a novel convolutional neural network (CNN) classifier and human graders in detecting angle closure in EyeCam (Clarity Medical Systems, Pleasanton, California, USA) goniophotographs.
PURPOSE: To meet the demands imposed by the continuing growth of the Age-related macular degeneration (AMD) patient population, automation of follow-ups by detecting retinal oedema using deep learning might be a viable approach. However, preparing an...
BACKGROUND: Medical artificial intelligence (AI) has entered the clinical implementation phase, although real-world performance of deep-learning systems (DLSs) for screening fundus disease remains unsatisfactory. Our study aimed to train a clinically...
BACKGROUND: In this systematic review and meta-analysis, we aimed to compare deep learning versus ophthalmologists in glaucoma diagnosis on fundus examinations.
International journal of environmental research and public health
35162226
Deep learning (DL) algorithms are used to diagnose diabetic retinopathy (DR). However, most of these algorithms have been trained using global data or data from patients of a single region. Using different model architectures (e.g., Inception-v3, Res...
Neovascular age-related macular degeneration (nAMD) is among the main causes of visual impairment worldwide. We built a deep learning model to distinguish the subtypes of nAMD using spectral domain optical coherence tomography (SD-OCT) images. Data f...
PURPOSE: Develop a deep learning-based automated method to segment meibomian glands (MG) and eyelids, quantitatively analyze the MG area and MG ratio, estimate the meiboscore, and remove specular reflections from infrared images.