As opioid-related overdose emergency department visits continue to rise in the United States, there is a need to understand the location and magnitude of the crisis, especially in at-risk rural areas. We analyzed sets of ZIP code level electronic hea...
BACKGROUND: Opioid use disorder (OUD) is a growing public health crisis, with opioids involved in an overwhelming majority of drug overdose deaths in the United States in recent years. While medications for opioid use disorder (MOUD) effectively redu...
BACKGROUND: The growing availability of big data spontaneously generated by social media platforms allows us to leverage natural language processing (NLP) methods as valuable tools to understand the opioid crisis.
BACKGROUND: Persistent opioid use is a common occurrence after surgery and prolonged exposure to opioids may result in escalation and dependence. The objective of this study was to develop machine-learning-based predictive models for persistent opioi...
INTRODUCTION: This paper outlines the steps necessary to assess the latest developments in artificial intelligence (AI) as well as Big Data technologies and their relevance to the opioid crisis. Fatal opioid overdoses have risen to over 82 998 annual...
Can Electronic Health Records (EHR) predict opioid misuse in general patient populations? This research trained three backpropagation neural networks to explore EHR predictors using existing patient data. Model 1 used patient diagnosis codes and was ...
International journal of medical informatics
Jun 24, 2024
OBJECTIVES: This study investigates the impact of participation in self-help groups on treatment completion among individuals undergoing medication for opioid use disorder (MOUD) treatment. Given the suboptimal adherence and retention rates for MOUD,...
BACKGROUND AND AIMS: Opioid use disorder (OUD) and opioid dependence lead to significant morbidity and mortality, yet treatment retention, crucial for the effectiveness of medications like buprenorphine-naloxone, remains unpredictable. Our objective ...
BACKGROUND: Opioid misuse in the paediatric population is understudied. This study aimed to develop a machine learning classifier to differentiate between occasional and sustained opioid users among children and adolescents in outpatient settings.
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.