BACKGROUND: Opioid use disorder (OUD) is a growing public health crisis, with opioids involved in an overwhelming majority of drug overdose deaths in the United States in recent years. While medications for opioid use disorder (MOUD) effectively redu...
Can Electronic Health Records (EHR) predict opioid misuse in general patient populations? This research trained three backpropagation neural networks to explore EHR predictors using existing patient data. Model 1 used patient diagnosis codes and was ...
OBJECTIVES: Buprenorphine is an effective evidence-based medication for opioid use disorder (OUD). Yet premature discontinuation undermines treatment effectiveness, increasing the risk of mortality and overdose. We developed and evaluated a machine l...
OBJECTIVE: A trial comparing extended-release naltrexone and sublingual buprenorphine-naloxone demonstrated higher relapse rates in individuals randomized to extended-release naltrexone. The effectiveness of treatment might vary based on patient char...
OBJECTIVES: Fibromyalgia is frequently treated with opioids due to limited therapeutic options. Long-term opioid use is associated with several adverse outcomes. Identifying factors associated with long-term opioid use is the first step in developing...
International journal of medical informatics
38964004
OBJECTIVES: This study investigates the impact of participation in self-help groups on treatment completion among individuals undergoing medication for opioid use disorder (MOUD) treatment. Given the suboptimal adherence and retention rates for MOUD,...
BACKGROUND AND AIMS: Opioid use disorder (OUD) and opioid dependence lead to significant morbidity and mortality, yet treatment retention, crucial for the effectiveness of medications like buprenorphine-naloxone, remains unpredictable. Our objective ...
BACKGROUND: Opioid misuse in the paediatric population is understudied. This study aimed to develop a machine learning classifier to differentiate between occasional and sustained opioid users among children and adolescents in outpatient settings.
BACKGROUND: Persistent opioid use is a common occurrence after surgery and prolonged exposure to opioids may result in escalation and dependence. The objective of this study was to develop machine-learning-based predictive models for persistent opioi...
BACKGROUND: The growing availability of big data spontaneously generated by social media platforms allows us to leverage natural language processing (NLP) methods as valuable tools to understand the opioid crisis.