The diagnosis of pancreatic cystic lesions remains challenging. This study aimed to investigate the diagnostic ability of carcinoembryonic antigen (CEA), cytology, and artificial intelligence (AI) by deep learning using cyst fluid in differentiating ...
Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
31946314
The lethal nature of pancreatic ductal adenocarcinoma (PDAC) calls for early differential diagnosis of pancreatic cysts, which are identified in up to 16% of normal subjects, and some of them may develop into PDAC. Pancreatic cysts have a large varia...
Pancreatic cystic lesions (PCLs) are well-known precursors of pancreatic cancer. Their diagnosis can be challenging as their behavior varies from benign to malignant disease. Precise and timely management of malignant pancreatic cysts might prevent t...
Most models for predicting malignant pancreatic intraductal papillary mucinous neoplasms were developed based on logistic regression (LR) analysis. Our study aimed to develop risk prediction models using machine learning (ML) and LR techniques and co...
PURPOSE: Current diagnostic and treatment modalities for pancreatic cysts (PCs) are invasive and are associated with patient morbidity. The purpose of this study is to develop and evaluate machine learning algorithms to delineate mucinous from non-mu...
The automatic segmentation of the pancreatic cyst lesion (PCL) is essential for the automated diagnosis of pancreatic cyst lesions on endoscopic ultrasonography (EUS) images. In this study, we proposed a deep-learning approach for PCL segmentation on...
PURPOSE: To develop a deep learning model (DLM) to improve readers' interpretation and speed in the differentiation of pancreatic cystic lesions (PCLs) on dual-phase enhanced CT, and a low contrast media dose, external testing set validated the model...
Background Deep learning (DL) may facilitate the diagnosis of various pancreatic lesions at imaging. Purpose To develop and validate a DL-based approach for automatic identification of patients with various solid and cystic pancreatic neoplasms at ab...
PURPOSE: To evaluate the efficacy of low-dose CT (LDCT) with deep learning image reconstruction (DLIR) for the surveillance of pancreatic cystic lesions (PCLs) compared with standard-dose CT (SDCT) with adaptive statistical iterative reconstruction (...
RATIONALE AND OBJECTIVES: According to current guidelines, pancreatic cystic lesions (PCLs) with worrisome or high-risk features may have overtreatment. The purpose of this study was to build a clinical and radiological based machine-learning (ML) mo...