AIMC Topic: Parkinson Disease

Clear Filters Showing 41 to 50 of 535 articles

Sway frequencies may predict postural instability in Parkinson's disease: a novel convolutional neural network approach.

Journal of neuroengineering and rehabilitation
BACKGROUND: Postural instability greatly reduces quality of life in people with Parkinson's disease (PD). Early and objective detection of postural impairments is crucial to facilitate interventions. Our aim was to use a convolutional neural network ...

Efficient Neural Network Classification of Parkinson's Disease and Schizophrenia Using Resting-State EEG Data.

Brain topography
Timely identification of Parkinson's disease and schizophrenia is crucial for the effective management and enhancement of patients' quality of life. The utilization of electroencephalogram (EEG) monitoring applications has proven instrumental in diag...

VSR-Net: Vessel-Like Structure Rehabilitation Network With Graph Clustering.

IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
The morphologies of vessel-like structures, such as blood vessels and nerve fibres, play significant roles in disease diagnosis, e.g., Parkinson's disease. Although deep network-based refinement segmentation and topology-preserving segmentation metho...

Improving reliability of movement assessment in Parkinson's disease using computer vision-based automated severity estimation.

Journal of Parkinson's disease
BackgroundClinical assessments of motor symptoms rely on observations and subjective judgments against standardized scales, leading to variability due to confounders. Improving inter-rater agreement is essential for effective disease management.Objec...

Review on computational methods for the detection and classification of Parkinson's Disease.

Computers in biology and medicine
BACKGROUND AND OBJECTIVE: The worldwide estimates reveal two-fold increase in incidence of Parkinson's disease (PD) over 25 years. The two-fold increased incidence and lack of proper treatment uplifted a compelling solicitude, nagging towards accurat...

Knowledge Distillation Guided Interpretable Brain Subgraph Neural Networks for Brain Disorder Exploration.

IEEE transactions on neural networks and learning systems
The human brain is a highly complex neurological system that has been the subject of continuous exploration by scientists. With the help of modern neuroimaging techniques, there has been significant progress made in brain disorder analysis. There is ...

Multi-source sparse broad transfer learning for parkinson's disease diagnosis via speech.

Medical & biological engineering & computing
Diagnosing Parkinson's disease (PD) via speech is crucial for its non-invasive and convenient data collection. However, the small sample size of PD speech data impedes accurate recognition of PD speech. Therefore, we propose a novel multi-source spar...

Machine Learning-based World Health Organization Disability Assessment Schedule for persons with Parkinson's disease.

Parkinsonism & related disorders
INTRODUCTION: The World Health Organization Disability Assessment Schedule 2.0 (WHODAS 2.0) is a well-known measure to assess disability in persons with Parkinson's disease (PD). The purpose of this study was to develop a short form of the WHODAS 2.0...

Differential diagnosis of multiple system atrophy with predominant parkinsonism and Parkinson's disease using neural networks (part II).

Journal of the neurological sciences
Neural networks (NNs) possess the capability to learn complex data relationships, recognize inherent patterns by emulating human brain functions, and generate predictions based on novel data. We conducted deep learning utilizing an NN to differentiat...

Significance of gender, brain region and EEG band complexity analysis for Parkinson's disease classification using recurrence plots and machine learning algorithms.

Physical and engineering sciences in medicine
Parkinson Disease (PD) is a complex neurological disorder attributed by loss of neurons generating dopamine in the SN per compacta. Electroencephalogram (EEG) plays an important role in diagnosing PD as it offers a non-invasive continuous assessment ...