Knowledge management tools that assist in systematic review and exploration of scientific knowledge generally are of obvious potential importance in evidence based medicine in general, but also to the design of therapeutics based on the protein subse...
Chest radiographs are among the most frequently acquired images in radiology and are often the subject of computer vision research. However, most of the models used to classify chest radiographs are derived from openly available deep neural networks,...
BACKGROUND: Chest CT is used for the assessment of the severity of patients infected with novel coronavirus 2019 (COVID-19). We collected chest CT scans of 202 patients diagnosed with the COVID-19, and try to develop a rapid, accurate and automatic t...
Coronavirus Disease (COVID19) is a fast-spreading infectious disease that is currently causing a healthcare crisis around the world. Due to the current limitations of the reverse transcription-polymerase chain reaction (RT-PCR) based tests for detect...
BACKGROUND: Currently, physicians are limited in their ability to provide an accurate prognosis for COVID-19 positive patients. Existing scoring systems have been ineffective for identifying patient decompensation. Machine learning (ML) may offer an ...
Coronavirus disease 2019 (COVID-19) has spread globally, and medical resources become insufficient in many regions. Fast diagnosis of COVID-19 and finding high-risk patients with worse prognosis for early prevention and medical resource optimisation ...
Journal of the Royal Society, Interface
Aug 5, 2020
We introduce a novel methodology for predicting the time evolution of the number of individuals in a given country reported to be infected with SARS-CoV-2. This methodology, which is based on the synergy of explicit mathematical formulae and deep lea...
This study aimed to identify clinical features for prognosing mortality risk using machine-learning methods in patients with coronavirus disease 2019 (COVID-19). A retrospective study of the inpatients with COVID-19 admitted from 15 January to 15 Mar...