AIMC Topic: Pregnancy

Clear Filters Showing 31 to 40 of 1119 articles

Research Gaps, Challenges, and Opportunities in Automated Insulin Delivery Systems.

Journal of diabetes science and technology
BACKGROUND: Since the discovery of the life-saving hormone insulin in 1921 by Dr Frederick Banting in 1921, there have been many critical discoveries and technical breakthroughs that have enabled people living with type 1 diabetes (T1D) to live longe...

Machine learning for the prediction of spontaneous preterm birth using early second and third trimester maternal blood gene expression: A cautionary tale.

PloS one
Spontaneous preterm birth (sPTB) remains a significant global health challenge and a leading cause of neonatal mortality and morbidity. Despite advancements in neonatal care, the prediction of sPTB remains elusive, in part due to complex etiologies a...

Analysis of maternal fetal outcomes and complete blood count parameters according to the stages of placental abruption: a retrospective study.

European journal of medical research
BACKGROUND: To compare the demographic characteristics, maternal and perinatal outcomes and hemoglobin parameters according to stages diagnosed with placental abruption.

Air Pollution and Autism Spectrum Disorder: Unveiling Multipollutant Risks and Sociodemographic Influences in California.

Environmental health perspectives
BACKGROUND: Autism spectrum disorder (ASD) is a neurodevelopmental condition with increasing prevalence worldwide. Air pollution may be a major contributor to the rise in ASD cases. This study investigated how the risk of ASD associated with prenatal...

Identification of macrophage-associated diagnostic biomarkers and molecular subtypes in gestational diabetes mellitus based on machine learning.

Artificial cells, nanomedicine, and biotechnology
Gestational diabetes mellitus (GDM) is a common metabolic disorder during pregnancy, involving multiple immune and inflammatory factors. Macrophages play a crucial role in its development. This study integrated scRNA-seq and RNA-seq data to explore m...

Harnessing vaginal inflammation and microbiome: a machine learning model for predicting IVF success.

NPJ biofilms and microbiomes
Humans are the only species with a commensal Lactobacillus-dominant vaginal microbiota. Reproductive tract microbes have been linked to fertility outcomes, as has intrauterine inflammation, suggesting immune response may mediate adverse outcomes. In ...

Advancing prenatal healthcare by explainable AI enhanced fetal ultrasound image segmentation using U-Net++ with attention mechanisms.

Scientific reports
Prenatal healthcare development requires accurate automated techniques for fetal ultrasound image segmentation. This approach allows standardized evaluation of fetal development by minimizing time-exhaustive processes that perform poorly due to human...

Automated interpretation of cardiotocography using deep learning in a nationwide multicenter study.

Scientific reports
Timely detection of abnormal cardiotocography (CTG) during labor plays a crucial role in enhancing fetal prognosis. Recent research has explored the use of deep learning for CTG interpretation, most studies rely on small, localized datasets or focus ...

Artificial intelligence in prediction of postpartum hemorrhage: a primer and review.

International journal of obstetric anesthesia
Postpartum hemorrhage (PPH) is a leading cause of maternal mortality worldwide, and the ability to predict PPH may help address preventable causes of morbidity and mortality such as delays in care. Understanding the importance of standardized approac...