AI Medical Compendium Topic:
Pregnancy

Clear Filters Showing 901 to 910 of 1036 articles

Data for AI in Congenital Heart Defects: Systematic Review.

Studies in health technology and informatics
Congenital heart disease (CHD) represents a significant challenge in prenatal care due to low prenatal detection rates. Artificial Intelligence (AI) offers promising avenues for precise CHD prediction. In this study we conducted a systematic review a...

[Application of the blastomere count variations "skip value" in the embryo AI assessment].

Zhonghua fu chan ke za zhi
To explore the correlation between blastomere count variations "skip value" which extracted from by time-lapse technology (TLT) combined with artificial intelligence (AI) and morphological features of in vitro fertilization (IVF) embryo, and to test...

Black-White Differences in Chronic Stress Exposures to Predict Preterm Birth: Interpretable, Race/Ethnicity-Specific Machine Learning Models.

Studies in health technology and informatics
We developed Multivariate Adaptive Regression Splines (MARS) machine learning models of chronic stressors using the Pregnancy Risk Assessment Monitoring System data (2012-2017) to predict preterm birth (PTB) more accurately and identify chronic stres...

Machine Learning in Electronic Health Records: Identifying High-Risk Obstetric Patients Pre and During Labor.

Studies in health technology and informatics
Our goal is to apply artificial intelligence (AI) and statistical analysis to understand the relationship between various factors and outcomes during pregnancy and labor and delivery, in order to personalize birth management and reduce complications ...

Machine learning to identify endometrial biomarkers predictive of pregnancy success following artificial insemination in dairy cows†.

Biology of reproduction
The objective was to identify a set of genes whose transcript abundance is predictive of a cow's ability to become pregnant following artificial insemination. Endometrial epithelial cells from the uterine body were collected for RNA sequencing using ...

Transformer-Based Wavelet-Scalogram Deep Learning for Improved Seizure Pattern Recognition in Post-Hypoxic-Ischemic Fetal Sheep EEG.

Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Hypoxic-ischemic (HI) events in newborns can trigger seizures, which are highly associated with later neurodevelopmental impairment. The precise detection of these seizures is a complex task requiring considerable very specialized expertise, undersco...

Exploring Random Forest Machine Learning for Fetal Movement Detection using Abdominal Acceleration and Angular Rate Data.

Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Fetal movement is a commonly monitored indicator of fetal wellbeing with reductions in fetal movement being associated with poor perinatal outcomes. However, more informative datasets of fetal movement are required for improved clinical decision maki...

Biomarker Identification for Preterm Birth Susceptibility: Vaginal Microbiome Meta-Analysis Using Systems Biology and Machine Learning Approaches.

American journal of reproductive immunology (New York, N.Y. : 1989)
PROBLEM: The vaginal microbiome has a substantial role in the occurrence of preterm birth (PTB), which contributes substantially to neonatal mortality worldwide. However, current bioinformatics approaches mostly concentrate on the taxonomic classific...

Understanding and predicting pregnancy termination in Bangladesh: A comprehensive analysis using a hybrid machine learning approach.

Medicine
Reproductive health issues, including unsafe pregnancy termination, remain a significant concern for women in developing nations. This study focused on investigating and predicting pregnancy termination in Bangladesh by employing a hybrid machine lea...