AIMC Topic: Radiographic Image Interpretation, Computer-Assisted

Clear Filters Showing 141 to 150 of 1289 articles

Enhanced swin transformer based tuberculosis classification with segmentation using chest X-ray.

Journal of X-ray science and technology
BACKGROUND:: Tuberculosis disease is the disease that causes significant morbidity and mortality worldwide. Thus, early detection of the disease is crucial for proper treatment and controlling the spread of Tuberculosis disease. Chest X-ray imaging i...

Sparse keypoint segmentation of lung fissures: efficient geometric deep learning for abstracting volumetric images.

International journal of computer assisted radiology and surgery
PURPOSE: Lung fissure segmentation on CT images often relies on 3D convolutional neural networks (CNNs). However, 3D-CNNs are inefficient for detecting thin structures like the fissures, which make up a tiny fraction of the entire image volume. We pr...

DCTP-Net: Dual-Branch CLIP-Enhance Textual Prompt-Aware Network for Acute Ischemic Stroke Lesion Segmentation From CT Image.

IEEE journal of biomedical and health informatics
Detecting early ischemic lesions (EIL) in computed tomography (CT) images is crucial for reducing diagnostic time and minimizing neuron loss due to oxygen deprivation. This paper introduces DCTP-Net, a dual-branch network for segmenting acute ischemi...

Dual-Stage AI Model for Enhanced CT Imaging: Precision Segmentation of Kidney and Tumors.

Tomography (Ann Arbor, Mich.)
OBJECTIVES: Accurate kidney and tumor segmentation of computed tomography (CT) scans is vital for diagnosis and treatment, but manual methods are time-consuming and inconsistent, highlighting the value of AI automation. This study develops a fully au...

Novel transfer learning based bone fracture detection using radiographic images.

BMC medical imaging
A bone fracture is a medical condition characterized by a partial or complete break in the continuity of the bone. Fractures are primarily caused by injuries and accidents, affecting millions of people worldwide. The healing process for a fracture ca...

Malignancy risk stratification for pulmonary nodules: comparing a deep learning approach to multiparametric statistical models in different disease groups.

European radiology
OBJECTIVES: Incidentally detected pulmonary nodules present a challenge in clinical routine with demand for reliable support systems for risk classification. We aimed to evaluate the performance of the lung-cancer-prediction-convolutional-neural-netw...

PFSH-Net: Parallel frequency-spatial hybrid network for segmentation of kidney stones in pre-contrast computed tomography images of dogs.

Computers in biology and medicine
Kidney stone is a common urological disease in dogs and can lead to serious complications such as pyelonephritis and kidney failure. However, manual diagnosis involves a lot of burdens on radiologists and may cause human errors due to fatigue. Automa...

BCNet: Bronchus Classification via Structure Guided Representation Learning.

IEEE transactions on medical imaging
CT-based bronchial tree analysis is a key step for the diagnosis of lung and airway diseases. However, the topology of bronchial trees varies across individuals, which presents a challenge to the automatic bronchus classification. To solve this issue...