AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Radiotherapy Dosage

Showing 1 to 10 of 461 articles

Clear Filters

Evaluation of deliverable artificial intelligence-based automated volumetric arc radiation therapy planning for whole pelvic radiation in gynecologic cancer.

Scientific reports
This study aimed to develop a deep learning (DL)-based deliverable whole pelvic volumetric arc radiation therapy (VMAT) for patients with gynecologic cancer using a prototype DL-based automated planning support system, named RatoGuide, to evaluate it...

Reinforcement learning-driven automated head and neck simultaneous integrated boost (SIB) radiation therapy: flexible treatment planning aligned with clinical preferences.

Physics in medicine and biology
Head-and-neck simultaneous integrated boost (SIB) treatment planning using intensity modulated radiation therapy is particularly challenging due to the proximity to organs-at-risk. Depending on the specific clinical conditions, different parotid-spar...

A machine learning toolkit assisted approach for IMRT fluence map optimization: feasibility and advantages.

Biomedical physics & engineering express
. Traditional machine learning (ML) and deep learning (DL) applications in treatment planning rely on complex model architectures and large, high-quality training datasets. However, they cannot fully replace the conventional optimization process. Thi...

Towards improved prescription metrics in novel radiotherapy techniques: a machine learning study.

Physics in medicine and biology
FLASH radiotherapy (RT), microbeam RT (MRT) and minibeam RT (MBRT) are novel RT techniques that have been shown to reduce normal tissue complication probabilities, by modulating the dose distributions through different parameters in space and time. T...

Evaluating the dosimetric and positioning accuracy of a deep learning based synthetic-CT model for liver radiotherapy treatment planning.

Biomedical physics & engineering express
An MRI-only workflow requires synthetic computed tomography (sCT) images to enable dose calculation. This study evaluated the dosimetric and patient positioning accuracy of deep learning-generated sCT for liver radiotherapy.sCT images were generated ...

Portal dose image prediction using Monte Carlo generated transmission energy fluence maps of dynamic radiotherapy treatment plans: a deep learning approach.

Biomedical physics & engineering express
This work aims to develop and investigate the feasibility of a hybrid model combining Monte Carlo (MC) simulations and deep learning (DL) to predict electronic portal imaging device (EPID) images based on MC-generated exit phase space energy fluence ...

Rapid dose prediction for lung CyberKnife radiotherapy plans utilizing a deep learning approach by incorporating dosimetric features delivered by noncoplanar beams.

Biomedical physics & engineering express
. The dose distribution of lung cancer patients treated with the CyberKnife (CK) system is influenced by various factors, including tumor location and the direction of CK beams. The objective of this study is to present a deep learning approach that ...

Lightweight and universal deep learning model for fast proton spot dose calculation at arbitrary energies.

Physics in medicine and biology
To better integrate into processes like rapid adaptive planning and quality assurance, this study aims to propose a lightweight and universal proton spot dose calculation model suitable for arbitrary energies.Given the alignment between the character...

Advancing patient care: Machine learning models for predicting grade 3+ toxicities in gynecologic cancer patients treated with HDR brachytherapy.

PloS one
BACKGROUND: Gynecological cancers are among the most prevalent cancers in women worldwide. Brachytherapy, often used as a boost to external beam radiotherapy, is integral to treatment. Advances in computation, algorithms, and data availability have p...

Feasibility study of automatic radiotherapy treatment planning for cervical cancer using a large language model.

Radiation oncology (London, England)
BACKGROUND: Radiotherapy treatment planning traditionally involves complex and time-consuming processes, often relying on trial-and-error methods. The emergence of artificial intelligence, particularly Large Language Models (LLMs), surpassing human c...