High-dose-rate (HDR) brachytherapy is integral to the standard-of-care for locally advanced cervical cancer (LACC). Currently, selection of brachytherapy applicators relies on physician's clinical experience, which can lead to variability in treatmen...
OBJECTIVE: This study investigates the relationship between vaginal radiation dose and radiation-induced vaginal injury in cervical cancer patients, with the aim of developing a risk prediction model to support personalized treatment strategies.
This study aimed to develop a deep learning (DL)-based deliverable whole pelvic volumetric arc radiation therapy (VMAT) for patients with gynecologic cancer using a prototype DL-based automated planning support system, named RatoGuide, to evaluate it...
Journal of applied clinical medical physics
Apr 23, 2025
Prostate Stereotactic Ablative Body Radiotherapy (SABR) is an ultra-hypofractionated treatment where small setup errors can lead to higher doses to organs at risk (OARs). Although bowel and bladder preparation protocols reduce inter-fraction variabil...
Head-and-neck simultaneous integrated boost (SIB) treatment planning using intensity modulated radiation therapy is particularly challenging due to the proximity to organs-at-risk. Depending on the specific clinical conditions, different parotid-spar...
. Traditional machine learning (ML) and deep learning (DL) applications in treatment planning rely on complex model architectures and large, high-quality training datasets. However, they cannot fully replace the conventional optimization process. Thi...
BACKGROUND: In partial arc volumetric modulated arc therapy (VMAT) for treating breast cancer, setting up the limiting gantry positions of the treatment machine is a nontrivial yet repetitive and time-consuming task during planning. Templatized solut...
FLASH radiotherapy (RT), microbeam RT (MRT) and minibeam RT (MBRT) are novel RT techniques that have been shown to reduce normal tissue complication probabilities, by modulating the dose distributions through different parameters in space and time. T...
An MRI-only workflow requires synthetic computed tomography (sCT) images to enable dose calculation. This study evaluated the dosimetric and patient positioning accuracy of deep learning-generated sCT for liver radiotherapy.sCT images were generated ...
This work aims to develop and investigate the feasibility of a hybrid model combining Monte Carlo (MC) simulations and deep learning (DL) to predict electronic portal imaging device (EPID) images based on MC-generated exit phase space energy fluence ...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.