OBJECTIVE: The accuracy of dose delivery for intensity modulated radiotherapy (IMRT) treatments should be determined by an accurate quality assurance procedure. In this work, we used artificial neural networks (ANNs) as an application for the pre-tre...
This study aims to utilize a deep convolutional neural network (DCNN) for synthesized CT image generation based on cone-beam CT (CBCT) and to apply the images to dose calculations for nasopharyngeal carcinoma (NPC). An encoder-decoder 2D U-Net neural...
Magnetic resonance imaging (MRI) has been widely used in combination with computed tomography (CT) radiation therapy because MRI improves the accuracy and reliability of target delineation due to its superior soft tissue contrast over CT. The MRI-onl...
Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology
Jul 11, 2019
PURPOSE: Glioblastoma is routinely treated by concomitant radiochemotherapy. Current target definition guidelines use anatomic MRI (magnetic resonance imaging) scans, taking into account contrast enhancement and the rather unspecific hyperintensity o...
PURPOSE: To develop and evaluate a patch-based convolutional neural network (CNN) to generate synthetic computed tomography (sCT) images for magnetic resonance (MR)-only workflow for radiotherapy of head and neck tumors. A patch-based deep learning m...
International journal of radiation oncology, biology, physics
Jul 2, 2019
PURPOSE: The first aim of this work is to present a novel deep convolution neural network (DCNN) multiplane approach and compare it to single-plane prediction of synthetic computed tomography (sCT) by using the real computed tomography (CT) as ground...
An accurate prediction of achievable dose distribution on a patient specific basis would greatly improve IMRT/VMAT planning in both efficiency and quality. Recently machine learning techniques have been proposed for IMRT dose prediction based on pati...
PURPOSE: The use of neural networks to directly predict three-dimensional dose distributions for automatic planning is becoming popular. However, the existing methods use only patient anatomy as input and assume consistent beam configuration for all ...
PURPOSE: To implement a framework for dose prediction using a deep convolutional neural network (CNN) based on the concept of isodose feature-preserving voxelization (IFPV) in simplifying the representation of the dose distribution.