AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Risk Factors

Showing 261 to 270 of 2299 articles

Clear Filters

Construction and evaluation of machine learning-based predictive models for early-onset preeclampsia.

Pregnancy hypertension
OBJECTIVE: To analyze the influencing factors of early-onset preeclampsia (EOPE). And to construct and validate the prediction model of EOPE using machine learning algorithm.

Postoperative fever following surgery for oral cancer: Incidence, risk factors, and the formulation of a machine learning-based predictive model.

BMC oral health
BACKGROUND: Postoperative fever (POF) is a common occurrence in patients undergoing major surgery, presenting challenges and burdens for both patients and surgeons yet. This study endeavors to examine the incidence, identify risk factors, and establi...

Risk factors and machine learning prediction models for intrahepatic cholestasis of pregnancy.

BMC pregnancy and childbirth
BACKGROUND: Intrahepatic cholestasis of pregnancy (ICP) is a liver disorder that occurs in the second and third trimesters of pregnancy and is associated with a significant risk of fetal complications, including premature birth and fetal death. In cl...

Risk factor assessment of prediabetes and diabetes based on epidemic characteristics in new urban areas: a retrospective and a machine learning study.

Scientific reports
To explore in depth the characteristics of the risk factors for diabetes and prediabetes pathogenesis and progression in special regions. We investigated medical data from 160 thousand cases in the newly developing urban area of a large modern city f...

Improving explainability of post-separation suicide attempt prediction models for transitioning service members: insights from the Army Study to Assess Risk and Resilience in Servicemembers - Longitudinal Study.

Translational psychiatry
Risk of U.S. Army soldier suicide-related behaviors increases substantially after separation from service. As universal prevention programs have been unable to resolve this problem, a previously reported machine learning model was developed using pre...

AI-based analysis of fetal growth restriction in a prospective obstetric cohort quantifies compound risks for perinatal morbidity and mortality and identifies previously unrecognized high risk clinical scenarios.

BMC pregnancy and childbirth
BACKGROUND: Fetal growth restriction (FGR) is a leading risk factor for stillbirth, yet the diagnosis of FGR confers considerable prognostic uncertainty, as most infants with FGR do not experience any morbidity. Our objective was to use data from a l...

Individual risk and prognostic value prediction by interpretable machine learning for distant metastasis in neuroblastoma: A population-based study and an external validation.

International journal of medical informatics
PURPOSE: Neuroblastoma (NB) is a childhood malignancy with a poor prognosis and a propensity for distant metastasis (DM). We aimed to establish machine learning (ML) based model to accurately predict risk of DM and prognosis of NB patients with DM.

Explore the factors related to the death of offspring under age five and appraise the hazard of child mortality using machine learning techniques in Bangladesh.

BMC public health
BACKGROUND: Child mortality is a reliable and significant indicator of a nation's health. Although the child mortality rate in Bangladesh is declining over time, it still needs to drop even more in order to meet the Sustainable Development Goals (SDG...

A deep learning analysis for dual healthcare system users and risk of opioid use disorder.

Scientific reports
The opioid crisis has disproportionately affected U.S. veterans, leading the Veterans Health Administration to implement opioid prescribing guidelines. Veterans who receive care from both VA and non-VA providers-known as dual-system users-have an inc...