AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Seizures

Showing 21 to 30 of 312 articles

Clear Filters

Supervised machine learning compared to large language models for identifying functional seizures from medical records.

Epilepsia
OBJECTIVE: The Functional Seizures Likelihood Score (FSLS) is a supervised machine learning-based diagnostic score that was developed to differentiate functional seizures (FS) from epileptic seizures (ES). In contrast to this targeted approach, large...

A Novel State Space Model with Dynamic Graphic Neural Network for EEG Event Detection.

International journal of neural systems
Electroencephalography (EEG) is a widely used physiological signal to obtain information of brain activity, and its automatic detection holds significant research importance, which saves doctors' time, improves detection efficiency and accuracy. Howe...

Epileptic seizure detection in EEG signals via an enhanced hybrid CNN with an integrated attention mechanism.

Mathematical biosciences and engineering : MBE
Epileptic seizures, a prevalent neurological condition, necessitate precise and prompt identification for optimal care. Nevertheless, the intricate characteristics of electroencephalography (EEG) signals, noise, and the want for real-time analysis re...

Inductive reasoning with large language models: A simulated randomized controlled trial for epilepsy.

Epilepsy research
INTRODUCTION: To investigate the potential of using artificial intelligence (AI), specifically large language models (LLMs), for synthesizing information in a simulated randomized clinical trial (RCT) for an anti-seizure medication, cenobamate, demon...

Machine learning based seizure classification and digital biosignal analysis of ECT seizures.

Scientific reports
While artificial intelligence has received considerable attention in various medical fields, its application in the field of electroconvulsive therapy (ECT) remains rather limited. With the advent of digital seizure collection systems, the developmen...

Integrating manual preprocessing with automated feature extraction for improved rodent seizure classification.

Epilepsy & behavior : E&B
HYPOTHESIS/OBJECTIVE: Rodent models of epilepsy can help with the search for more effective drug candidates or neuromodulatory therapies. Yet, preclinical screening of candidate options for anti-epileptic drugs (AED) using rodent models may require h...

Machine learning enables high-throughput, low-replicate screening for novel anti-seizure targets and compounds using combined movement and calcium fluorescence in larval zebrafish.

European journal of pharmacology
Identifying new anti-seizure medications (ASMs) is difficult due to limitations in animal-based assays. Zebrafish (Danio rerio) serve as a model for chemical and genetic seizures, but current methods for detecting anti-seizure responses are limited b...

Real-Time Epileptic Seizure Prediction Method With Spatio-Temporal Information Transfer Learning.

IEEE journal of biomedical and health informatics
Despite numerous studies aimed at improving accuracy, the accurate prediction of epileptic seizures remains a challenge in clinical practice due to the high computational cost, poor real-time performance, and over-reliance on labelled data. To addres...

Predicting EEG seizures using graded spiking neural networks.

Journal of neural engineering
To develop and evaluate a novel, non-patient-specific epileptic seizure prediction system using graded spiking neural networks (GSNNs) implemented on Intel's Loihi 2 neuromorphic processor, addressing the challenges of real-time, energy-efficient pre...

Hardware Optimization and Implementation of a 16-Channel Neural Tree Classifier for On-Chip Closed-Loop Neuromodulation.

IEEE transactions on biomedical circuits and systems
This work presents the development of on-chip machine learning (ML) classifiers for implantable neuromodulation system-on-chips (SoCs), aimed at detecting epileptic seizures for closed-loop neuromodulation applications. Tree-based classifiers have ga...