AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Sepsis

Showing 161 to 170 of 308 articles

Clear Filters

DeepAISE - An interpretable and recurrent neural survival model for early prediction of sepsis.

Artificial intelligence in medicine
Sepsis, a dysregulated immune system response to infection, is among the leading causes of morbidity, mortality, and cost overruns in the Intensive Care Unit (ICU). Early prediction of sepsis can improve situational awareness among clinicians and fac...

Artificial intelligence in sepsis early prediction and diagnosis using unstructured data in healthcare.

Nature communications
Sepsis is a leading cause of death in hospitals. Early prediction and diagnosis of sepsis, which is critical in reducing mortality, is challenging as many of its signs and symptoms are similar to other less critical conditions. We develop an artifici...

Is Deep Reinforcement Learning Ready for Practical Applications in Healthcare? A Sensitivity Analysis of Duel-DDQN for Hemodynamic Management in Sepsis Patients.

AMIA ... Annual Symposium proceedings. AMIA Symposium
The potential of Reinforcement Learning (RL) has been demonstrated through successful applications to games such as Go and Atari. However, while it is straightforward to evaluate the performance of an RL algorithm in a game setting by simply using it...

Predicting Volume Responsiveness Among Sepsis Patients Using Clinical Data and Continuous Physiological Waveforms.

AMIA ... Annual Symposium proceedings. AMIA Symposium
The efficacy of early fluid treatment in patients with sepsis is unclear and may contribute to serious adverse events due to fluid non-responsiveness. The current method of deciding if patients are responsive to fluid administration is often subjecti...

Contextual Embeddings from Clinical Notes Improves Prediction of Sepsis.

AMIA ... Annual Symposium proceedings. AMIA Symposium
Sepsis, a life-threatening organ dysfunction, is a clinical syndrome triggered by acute infection and affects over 1 million Americans every year. Untreated sepsis can progress to septic shock and organ failure, making sepsis one of the leading cause...

A comparison of machine learning models versus clinical evaluation for mortality prediction in patients with sepsis.

PloS one
INTRODUCTION: Patients with sepsis who present to an emergency department (ED) have highly variable underlying disease severity, and can be categorized from low to high risk. Development of a risk stratification tool for these patients is important f...

Machine learning methods to improve bedside fluid responsiveness prediction in severe sepsis or septic shock: an observational study.

British journal of anaesthesia
BACKGROUND: Passive leg raising (PLR) predicts fluid responsiveness in critical illness, although restrictions in mobilising patients often preclude this haemodynamic challenge being used. We investigated whether machine learning applied on transthor...

Predicting 30-days mortality for MIMIC-III patients with sepsis-3: a machine learning approach using XGboost.

Journal of translational medicine
BACKGROUND: Sepsis is a significant cause of mortality in-hospital, especially in ICU patients. Early prediction of sepsis is essential, as prompt and appropriate treatment can improve survival outcomes. Machine learning methods are flexible predicti...

Development and utility assessment of a machine learning bloodstream infection classifier in pediatric patients receiving cancer treatments.

BMC cancer
BACKGROUND: Objectives were to build a machine learning algorithm to identify bloodstream infection (BSI) among pediatric patients with cancer and hematopoietic stem cell transplantation (HSCT) recipients, and to compare this approach with presence o...

SSP: Early prediction of sepsis using fully connected LSTM-CNN model.

Computers in biology and medicine
BACKGROUND: Sepsis is a life-threatening condition that occurs due to the body's reaction to infections, and it is a leading cause of morbidity and mortality in hospitals. Early prediction of sepsis onset facilitates early interventions that promote ...