BACKGROUND: Preclinical low-count positron emission tomography (LC-PET) imaging offers numerous advantages such as facilitating imaging logistics, enabling longitudinal studies of long- and short-lived isotopes as well as increasing scanner throughpu...
Optical coherence tomography (OCT) is a medical imaging method that generates micron-resolution 3D volumetric images of tissues in-vivo. Photothermal (PT)-OCT is a functional extension of OCT with the potential to provide depth-resolved molecular inf...
We proposed a new deep learning (DL) model for accurate scatter correction in digital radiography. The proposed network featured a pixel-wise water equivalent path length (WEPL) map of subjects with diverse sizes and 3D inner structures. The proposed...
Journal of imaging informatics in medicine
Apr 26, 2024
The aim of this study was to investigate whether super-resolution deep learning reconstruction (SR-DLR) is superior to conventional deep learning reconstruction (DLR) with respect to interobserver agreement in the evaluation of neuroforaminal stenosi...
PURPOSE: The purpose of our study is to investigate image quality, efficiency, and diagnostic performance of a deep learning-accelerated single-shot breath-hold (DLSB) against BLADE for T-weighted MR imaging (TWI) for gastric cancer (GC).
OBJECTIVES: To assess a deep learning-based reconstruction algorithm (DLRecon) in zero echo-time (ZTE) MRI of the shoulder at 1.5 Tesla for improved delineation of osseous findings.
OBJECTIVE: To prospectively evaluate a deep learning-based denoising reconstruction (DLR) for improved resolution and image quality in musculoskeletal (MSK) magnetic resonance imaging (MRI).
PURPOSE: To investigate whether parallel imaging-imposed geometric coil constraints can be relaxed when using a deep learning (DL)-based image reconstruction method as opposed to a traditional non-DL method.
PURPOSE: To compare the image quality and pulmonary nodule detectability between deep learning image reconstruction (DLIR) and adaptive statistical iterative reconstruction-Veo (ASIR-V) in ultra-low-dose CT (ULD-CT).
PURPOSE: Na MRI can be used to quantify in-vivo tissue sodium concentration (TSC), but the inherently low Na signal leads to long scan times and/or noisy or low-resolution images. Reconstruction algorithms such as compressed sensing (CS) have been pr...