Computational and mathematical methods in medicine
Aug 1, 2020
BACKGROUND: The differential diagnosis of subcentimetre lung nodules with a diameter of less than 1 cm has always been one of the problems of imaging doctors and thoracic surgeons. We plan to create a deep learning model for the diagnosis of pulmonar...
Lung cancer is a major cause of death worldwide. As early detection can improve outcome, regular screening is of great interest, especially for certain risk groups. Besides low-dose computed tomography, chest X-ray is a potential option for screening...
OBJECTIVES: To evaluate the differential diagnostic performance of a computed tomography (CT)-based deep learning nomogram (DLN) in identifying tuberculous granuloma (TBG) and lung adenocarcinoma (LAC) presenting as solitary solid pulmonary nodules (...
PURPOSE: To evaluate the performance of a deep learning-based computer-aided diagnosis (CAD) system at detecting pulmonary nodules on CT by comparing radiologists' readings with and without CAD.
Computer methods and programs in biomedicine
Jun 20, 2020
BACKGROUND AND OBJECTIVE: To investigate the effect of the slab thickness in maximum intensity projections (MIPs) on the candidate detection performance of a deep learning-based computer-aided detection (DL-CAD) system for pulmonary nodule detection ...
PURPOSE: To accurately distinguish benign from malignant pulmonary nodules with CT based on partial structures of 3D U-Net integrated with Capsule Networks (CapNets) and provide a reference for the early diagnosis of lung cancer.
OBJECTIVES: To investigate the optimal input matrix size for deep learning-based computer-aided detection (CAD) of nodules and masses on chest radiographs.
A number of studies on lung nodule classification lack clinical/biological interpretations of the features extracted by convolutional neural network (CNN). The methods like class activation mapping (CAM) and gradient-based CAM (Grad-CAM) are tailored...
OBJECTIVES: To evaluate the diagnostic performance of a deep learning algorithm for automated detection of small F-FDG-avid pulmonary nodules in PET scans, and to assess whether novel block sequential regularized expectation maximization (BSREM) reco...