AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Solitary Pulmonary Nodule

Showing 31 to 40 of 201 articles

Clear Filters

The effectiveness of deep learning model in differentiating benign and malignant pulmonary nodules on spiral CT.

Technology and health care : official journal of the European Society for Engineering and Medicine
BACKGROUND: Pulmonary nodule, one of the most common clinical phenomena, is an irregular circular lesion with a diameter of ⩽ 3 cm in the lungs, which can be classified as benign or malignant. Differentiating benign and malignant pulmonary nodules ha...

Impact of artificial intelligence assistance on pulmonary nodule detection and localization in chest CT: a comparative study among radiologists of varying experience levels.

Scientific reports
The study aimed to evaluate the impact of AI assistance on pulmonary nodule detection rates among radiology residents and senior radiologists, along with assessing the effectiveness of two different commercialy available AI software systems in improv...

GC-WIR : 3D global coordinate attention wide inverted ResNet network for pulmonary nodules classification.

BMC pulmonary medicine
PURPOSE: Currently, deep learning methods for the classification of benign and malignant lung nodules encounter challenges encompassing intricate and unstable algorithmic models, limited data adaptability, and an abundance of model parameters.To tack...

Artificial intelligence-assisted quantitative CT parameters in predicting the degree of risk of solitary pulmonary nodules.

Annals of medicine
INTRODUCTION: Artificial intelligence (AI) shows promise for evaluating solitary pulmonary nodules (SPNs) on computed tomography (CT). Accurately determining cancer invasiveness can guide treatment. We aimed to investigate quantitative CT parameters ...

Clinical utility of an artificial intelligence radiomics-based tool for risk stratification of pulmonary nodules.

JNCI cancer spectrum
BACKGROUND: Clinical utility data on pulmonary nodule (PN) risk stratification biomarkers are lacking. We aimed to determine the incremental predictive value and clinical utility of using an artificial intelligence (AI) radiomics-based computer-aided...

Pulmonary nodule visualization and evaluation of AI-based detection at various ultra-low-dose levels using photon-counting detector CT.

Acta radiologica (Stockholm, Sweden : 1987)
BACKGROUND: Radiation dose should be as low as reasonably achievable. With the invention of photon-counting detector computed tomography (PCD-CT), the radiation dose may be considerably reduced.

An Integrated Nomogram Combining Deep Learning and Radiomics for Predicting Malignancy of Pulmonary Nodules Using CT-Derived Nodules and Adipose Tissue: A Multicenter Study.

Cancer medicine
BACKGROUND: Correctly distinguishing between benign and malignant pulmonary nodules can avoid unnecessary invasive procedures. This study aimed to construct a deep learning radiomics clinical nomogram (DLRCN) for predicting malignancy of pulmonary no...

Lung nodule classification using radiomics model trained on degraded SDCT images.

Computer methods and programs in biomedicine
BACKGROUND AND OBJECTIVE: Low-dose computed tomography (LDCT) screening has shown promise in reducing lung cancer mortality; however, it suffers from high false positive rates and a scarcity of available annotated datasets. To overcome these challeng...

An anthropomorphic diagnosis system of pulmonary nodules using weak annotation-based deep learning.

Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
The accurate categorization of lung nodules in CT scans is an essential aspect in the prompt detection and diagnosis of lung cancer. The categorization of grade and texture for nodules is particularly significant since it can aid radiologists and cli...