AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Static Electricity

Showing 31 to 40 of 50 articles

Clear Filters

Photoluminescence-tunable fluorescent carbon dots-deposited silver nanoparticle for detection and killing of bacteria.

Materials science & engineering. C, Materials for biological applications
Innovative methods to detect and kill pathogenic bacteria have a pivotal role in the eradication of infectious diseases and the prevention of the growth of antibiotic-resistant bacteria. The combination of fluorescent carbon dots (FCDs) with silver n...

Comparison of response surface methodology and artificial neural network to optimize novel ophthalmic flexible nano-liposomes: Characterization, evaluation, in vivo pharmacokinetics and molecular dynamics simulation.

Colloids and surfaces. B, Biointerfaces
To improve the topical delivery of pilocarpine hydrochloride (PN) to treat glaucoma, flexible nano-liposomes containing PN (PN-FLs) were prepared, optimized and characterized. Artificial neural network (ANN) and response surface methodology (RSM) wer...

Toward Building Protein Force Fields by Residue-Based Systematic Molecular Fragmentation and Neural Network.

Journal of chemical theory and computation
Accurate force fields are crucial for molecular dynamics investigation of complex biological systems. Building accurate protein force fields from quantum mechanical (QM) calculations is challenging due to the complexity of proteins and high computati...

PhysNet: A Neural Network for Predicting Energies, Forces, Dipole Moments, and Partial Charges.

Journal of chemical theory and computation
In recent years, machine learning (ML) methods have become increasingly popular in computational chemistry. After being trained on appropriate ab initio reference data, these methods allow for accurately predicting the properties of chemical systems,...

Learning Compositional Representations of Interacting Systems with Restricted Boltzmann Machines: Comparative Study of Lattice Proteins.

Neural computation
A restricted Boltzmann machine (RBM) is an unsupervised machine learning bipartite graphical model that jointly learns a probability distribution over data and extracts their relevant statistical features. RBMs were recently proposed for characterizi...

Practical High-Quality Electrostatic Potential Surfaces for Drug Discovery Using a Graph-Convolutional Deep Neural Network.

Journal of medicinal chemistry
Inspecting protein and ligand electrostatic potential (ESP) surfaces in order to optimize electrostatic complementarity is a key activity in drug design. These ESP surfaces need to reflect the true electrostatic nature of the molecules, which typical...

Steroid identification via deep learning retention time predictions and two-dimensional gas chromatography-high resolution mass spectrometry.

Journal of chromatography. A
Untargeted steroid identification represents a great analytical challenge even when using sophisticated technology such as two-dimensional gas chromatography coupled to high resolution mass spectrometry (GC × GCHRMS) due to the chemical similarity of...

Characterizing Protein-Ligand Binding Using Atomistic Simulation and Machine Learning: Application to Drug Resistance in HIV-1 Protease.

Journal of chemical theory and computation
Over the past several decades, atomistic simulations of biomolecules, whether carried out using molecular dynamics or Monte Carlo techniques, have provided detailed insights into their function. Comparing the results of such simulations for a few clo...

Generalized Born radii computation using linear models and neural networks.

Bioinformatics (Oxford, England)
MOTIVATION: Implicit solvent models play an important role in describing the thermodynamics and the dynamics of biomolecular systems. Key to an efficient use of these models is the computation of generalized Born (GB) radii, which is accomplished by ...