AIMC Topic: Support Vector Machine

Clear Filters Showing 481 to 490 of 4708 articles

Predicting Intra- and Postpartum Hemorrhage through Artificial Intelligence.

Medicina (Kaunas, Lithuania)
: Intra/postpartum hemorrhage stands as a significant obstetric emergency, ranking among the top five leading causes of maternal mortality. The aim of this study was to assess the predictive performance of four machine learning algorithms for the pre...

Ensemble and optimization algorithm in support vector machines for classification of wheat genotypes.

Scientific reports
This study aimed to classifying wheat genotypes using support vector machines (SVMs) improved with ensemble algorithms and optimization techniques. Utilizing data from 302 wheat genotypes and 14 morphological attributes to evaluate six SVM kernels: l...

Nondestructive Detection of Corky Disease in Symptomless 'Akizuki' Pears via Raman Spectroscopy.

Sensors (Basel, Switzerland)
'Akizuki' pear ( Nakai) corky disease is a physiological disease that strongly affects the fruit quality of 'Akizuki' pear and its economic value. In this study, Raman spectroscopy was employed to develop an early diagnosis model by integrating suppo...

Classification of mindfulness experiences from gamma-band effective connectivity: Application of machine-learning algorithms on resting, breathing, and body scan.

Computer methods and programs in biomedicine
BACKGROUND AND OBJECTIVE: Practicing mindfulness is a mental process toward interoceptive awareness, achieving stress reduction and emotion regulation through brain-function alteration. Literature has shown that electroencephalography (EEG)-derived c...

The application of machine learning for identifying frailty in older patients during hospital admission.

BMC medical informatics and decision making
BACKGROUND: Early identification of frail patients and early interventional treatment can minimize the frailty-related medical burden. This study investigated the use of machine learning (ML) to detect frailty in hospitalized older adults with acute ...

Development and validation of machine learning models for diagnosis and prognosis of lung adenocarcinoma, and immune infiltration analysis.

Scientific reports
The aim of our study was to develop robust diagnostic and prognostic models for lung adenocarcinoma (LUAD) using machine learning (ML) techniques, focusing on early immune infiltration. Feature selection was performed on The Cancer Genome Atlas (TCGA...

Interpretable machine learning for allergic rhinitis prediction among preschool children in Urumqi, China.

Scientific reports
This study aimed to investigate the advantages and applications of machine learning models in predicting the risk of allergic rhinitis (AR) in children aged 2-8, compared to traditional logistic regression. The study analyzed questionnaire data from ...

Interpretable machine learning models for the prediction of all-cause mortality and time to death in hemodialysis patients.

Therapeutic apheresis and dialysis : official peer-reviewed journal of the International Society for Apheresis, the Japanese Society for Apheresis, the Japanese Society for Dialysis Therapy
INTRODUCTION: The elevated mortality and hospitalization rates among hemodialysis (HD) patients underscore the necessity for the development of accurate predictive tools. This study developed two models for predicting all-cause mortality and time to ...

Beach nourishment for coastal aquifersimpacted by climate change and population growth using machine learning approaches.

Journal of environmental management
Groundwater in coastal regions is threatened by saltwater intrusion (SWI). Beach nourishment is used in this study to manage SWI in the Biscayne aquifer, Florida, USA, using a 3D SEAWAT model nourishment considering the future sea level rise and fres...