A remarkable variety of organisms use metachronal coordination (i.e. numerous neighboring appendages beating sequentially with a fixed phase lag) to swim or pump fluid. This coordination strategy is used by microorganisms to break symmetry at small s...
Autonomous ocean-exploring vehicles have begun to take advantage of onboard sensor measurements of water properties such as salinity and temperature to locate oceanic features in real time. Such targeted sampling strategies enable more rapid study of...
Micro-sensors, such as pressure and flow sensors, are usually adopted to attain actual fluid information around swimming biomimetic robotic fish for hydrodynamic analysis and control. However, most of the reported micro-sensors are mounted discretely...
Soft actuators offer numerous potential applications; however, challenges persist in achieving a high driving force and fast response speed. In this work, we present the design, fabrication, and analysis of a soft pneumatic bistable actuator (PBA) mi...
To achieve the accuracy and anti-interference of the motion control of the soft robot more effectively, the motion control strategy of the pneumatic soft bionic robot based on the improved Central Pattern Generator (CPG) is proposed. According to the...
Journal of the Royal Society, Interface
Jul 3, 2024
Natural swimmers and flyers can fully recover from catastrophic propulsor damage by altering stroke mechanics: some fish can lose even 76% of their propulsive surface without loss of thrust. We consider applying these principles to enable robotic fla...
BACKGROUND: The forced swim test (FST) and tail suspension test (TST) are widely used to assess depressive-like behaviors in animals. Immobility time is used as an important parameter in both FST and TST. Traditional methods for analyzing FST and TST...
This study aims to investigate the feasibility of using an artificial lateral line (ALL) system for predicting the real-time position and pose of an undulating swimmer with Carangiform swimming patterns. We established a 3D computational fluid dynami...
Animals have evolved highly effective locomotion capabilities in terrestrial, aerial, and aquatic environments. Over life's history, mass extinctions have wiped out unique animal species with specialized adaptations, leaving paleontologists to recons...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.