BACKGROUND: Artificial intelligence (AI) algorithms have been applied to diagnose temporomandibular disorders (TMDs). However, studies have used different patient selection criteria, disease subtypes, input data, and outcome measures. Resultantly, th...
Temporomandibular disorders are typically accompanied by a number of clinical manifestations that involve pain and dysfunction of the masticatory muscles and temporomandibular joint. The most important subgroup of articular abnormalities in patients ...
BACKGROUND: Temporomandibular disorders (TMD) and orofacial pain are highly prevalent. This prevalence can be compared to that of leading non-communicable diseases (NCDs). However, it is surprising to still find a high degree of controversy regarding...
This study investigated the usefulness of deep learning-based automatic detection of anterior disc displacement (ADD) from magnetic resonance imaging (MRI) of patients with temporomandibular joint disorder (TMD). Sagittal MRI images of 2520 TMJs were...
This study proposes a new diagnostic tool for automatically extracting discriminative features and detecting temporomandibular joint disc displacement (TMJDD) accurately with artificial intelligence. We analyzed the structural magnetic resonance imag...
OBJECTIVES: Temporomandibular joint (TMJ) internal derangements (ID) represent the most prevalent temporomandibular joint disorder (TMD) in the population and its diagnosis typically relies on magnetic resonance imaging (MRI). TMJ articular discs in ...
BACKGROUND: Temporomandibular disorders (TMDs) are disabling conditions with a negative impact on the quality of life. Their diagnosis is a complex and multi-factorial process that should be conducted by experienced professionals, and most TMDs remai...
Computer methods and programs in biomedicine
36933315
BACKGROUND AND OBJECTIVE: MRI is considered the gold standard for diagnosing anterior disc displacement (ADD), the most common temporomandibular joint (TMJ) disorder. However, even highly trained clinicians find it difficult to integrate the dynamic ...
OBJECTIVE: Quantitative analysis of the volume and shape of the temporomandibular joint (TMJ) using cone-beam computed tomography (CBCT) requires accurate segmentation of the mandibular condyles and the glenoid fossae. This study aimed to develop and...
Oral surgery, oral medicine, oral pathology and oral radiology
37263812
OBJECTIVES: The objective was to evaluate the robustness of deep learning (DL)-based encoder-decoder convolutional neural networks (ED-CNNs) for segmenting temporomandibular joint (TMJ) articular disks using data sets acquired from 2 different 3.0-T ...