Middle East African journal of ophthalmology
39959595
Numerous artificial intelligence (AI) models, including deep learning techniques, are being developed to segment choroids in optical coherence tomography (OCT) images. However, there is a need for consensus on which specific models to use, requiring ...
Optical Coherence Tomography (OCT) plays a crucial role in diagnosing ocular diseases, yet conventional CNN-based models face limitations such as high computational overhead, noise sensitivity, and data imbalance. This paper introduces HDL-ACO, a nov...
OBJECTIVE: Hyperreflective foci (HRF) are small, punctate lesions ranging from 20 to 50 m and exhibiting high reflective intensity in optical coherence tomography (OCT) images of patients with diabetic retinopathy (DR). The purpose of the model prop...
SIGNIFICANCE: Current methods for complex conjugate removal (CCR) in frequency-domain optical coherence tomography (FD-OCT) often require additional hardware components, which increase system complexity and cost. A software-based solution would provi...
Glaucoma is characterised by progressive vision loss due to retinal ganglion cell deterioration, leading to gradual visual field (VF) impairment. The standard VF test may be impractical in some cases, where optical coherence tomography (OCT) can offe...
PURPOSE: To determine whether convolutional neural networks (CNN) can classify the severity of central vision loss using fundus autofluorescence (FAF) images and color fundus images of retinitis pigmentosa (RP), and to evaluate the utility of those i...
PURPOSE: The purpose of this study was to provide the development of a method to classify optical coherence tomography (OCT)-assessed retinal data in the context of automatic diagnosis of early-stage multiple sclerosis (MS) with decision explanation.
Diabetic Macular Edema (DME) is a major complication of diabetic retinopathy characterized by fluid accumulation in the macula, leading to vision impairment. The standard treatment involves anti-VEGF (Vascular Endothelial Growth Factor) therapy, but ...
PURPOSE: To evaluate the performance of various approaches of processing three-dimensional (3D) optical coherence tomography (OCT) images for deep learning models in predicting area and future growth rate of geographic atrophy (GA) lesions caused by ...
PURPOSE: We present RetOCTNet, a deep learning tool to segment the retinal nerve fiber layer (RNFL) and total retinal thickness automatically from optical coherence tomography (OCT) scans in rats following retinal ganglion cell (RGC) injury.