AI Medical Compendium Topic:
Tomography, X-Ray Computed

Clear Filters Showing 571 to 580 of 4538 articles

A Scoping Review of Machine-Learning Derived Radiomic Analysis of CT and PET Imaging to Investigate Atherosclerotic Cardiovascular Disease.

Tomography (Ann Arbor, Mich.)
BACKGROUND: Cardiovascular disease affects the carotid arteries, coronary arteries, aorta and the peripheral arteries. Radiomics involves the extraction of quantitative data from imaging features that are imperceptible to the eye. Radiomics analysis ...

Non-invasive multimodal CT deep learning biomarker to predict pathological complete response of non-small cell lung cancer following neoadjuvant immunochemotherapy: a multicenter study.

Journal for immunotherapy of cancer
OBJECTIVES: Although neoadjuvant immunochemotherapy has been widely applied in non-small cell lung cancer (NSCLC), predicting treatment response remains a challenge. We used pretreatment multimodal CT to explore deep learning-based immunochemotherapy...

PCNet: Prior Category Network for CT Universal Segmentation Model.

IEEE transactions on medical imaging
Accurate segmentation of anatomical structures in Computed Tomography (CT) images is crucial for clinical diagnosis, treatment planning, and disease monitoring. The present deep learning segmentation methods are hindered by factors such as data scale...

Better Rough Than Scarce: Proximal Femur Fracture Segmentation With Rough Annotations.

IEEE transactions on medical imaging
Proximal femoral fracture segmentation in computed tomography (CT) is essential in the preoperative planning of orthopedic surgeons. Recently, numerous deep learning-based approaches have been proposed for segmenting various structures within CT scan...

Machine learning-assisted diagnosis of parotid tumor by using contrast-enhanced CT imaging features.

Journal of stomatology, oral and maxillofacial surgery
PURPOSE: This study aims to develop a machine learning diagnostic model for parotid gland tumors based on preoperative contrast-enhanced CT imaging features to assist in clinical decision-making.

Comprehensive Clinical Usability-Oriented Contour Quality Evaluation for Deep Learning Auto-segmentation: Combining Multiple Quantitative Metrics Through Machine Learning.

Practical radiation oncology
PURPOSE: The current commonly used metrics for evaluating the quality of auto-segmented contours have limitations and do not always reflect the clinical usefulness of the contours. This work aims to develop a novel contour quality classification (CQC...

Three contrasts in 3 min: Rapid, high-resolution, and bone-selective UTE MRI for craniofacial imaging with automated deep-learning skull segmentation.

Magnetic resonance in medicine
PURPOSE: Ultrashort echo time (UTE) MRI can be a radiation-free alternative to CT for craniofacial imaging of pediatric patients. However, unlike CT, bone-specific MR imaging is limited by long scan times, relatively low spatial resolution, and a tim...

Machine learning value in the diagnosis of vertebral fractures: A systematic review and meta-analysis.

European journal of radiology
PURPOSE: To evaluate the diagnostic accuracy of machine learning (ML) in detecting vertebral fractures, considering varying fracture classifications, patient populations, and imaging approaches.

An unsupervised learning model based on CT radiomics features accurately predicts axillary lymph node metastasis in breast cancer patients: diagnostic study.

International journal of surgery (London, England)
BACKGROUND: The accuracy of traditional clinical methods for assessing the metastatic status of axillary lymph nodes (ALNs) is unsatisfactory. In this study, the authors propose the use of radiomic technology and three-dimensional (3D) visualization ...