AIMC Topic: Tomography, X-Ray Computed

Clear Filters Showing 731 to 740 of 4963 articles

Dual Energy CT for Deep Learning-Based Segmentation and Volumetric Estimation of Early Ischemic Infarcts.

Journal of imaging informatics in medicine
Ischemic changes are not visible on non-contrast head CT until several hours after infarction, though deep convolutional neural networks have shown promise in the detection of subtle imaging findings. This study aims to assess if dual-energy CT (DECT...

Implementation of an AI Algorithm in Clinical Practice to Reduce Missed Incidental Pulmonary Embolisms on Chest CT and Its Impact on Short-Term Survival.

Investigative radiology
OBJECTIVES: A substantial number of incidental pulmonary embolisms (iPEs) in computed tomography scans are missed by radiologists in their daily routine. This study analyzes the radiological reports of iPE cases before and after implementation of an ...

Less is More: Selective reduction of CT data for self-supervised pre-training of deep learning models with contrastive learning improves downstream classification performance.

Computers in biology and medicine
BACKGROUND: Self-supervised pre-training of deep learning models with contrastive learning is a widely used technique in image analysis. Current findings indicate a strong potential for contrastive pre-training on medical images. However, further res...

Development of HepatIA: A computed tomography annotation platform and database for artificial intelligence training in hepatocellular carcinoma detection at a Brazilian tertiary teaching hospital.

Clinics (Sao Paulo, Brazil)
BACKGROUND: Hepatocellular carcinoma (HCC) is a prevalent tumor with high mortality rates. Computed tomography (CT) is crucial in the non-invasive diagnosis of HCC. Recent advancements in artificial intelligence (AI) have shown significant potential ...

Evaluating Explainable Artificial Intelligence (XAI) techniques in chest radiology imaging through a human-centered Lens.

PloS one
The field of radiology imaging has experienced a remarkable increase in using of deep learning (DL) algorithms to support diagnostic and treatment decisions. This rise has led to the development of Explainable AI (XAI) system to improve the transpare...

Evaluation of the accuracy of automated segmentation based on deep learning for prostate cancer patients.

Medical dosimetry : official journal of the American Association of Medical Dosimetrists
PURPOSE: This study evaluated the accuracy of a commercial deep learning (DL)-based algorithm for segmenting the prostate, seminal vesicles (SV), and organs at risk (OAR) in patients with prostate cancer.

Artificial intelligence for detection and characterization of focal hepatic lesions: a review.

Abdominal radiology (New York)
Focal liver lesions (FLL) are common incidental findings in abdominal imaging. While the majority of FLLs are benign and asymptomatic, some can be malignant or pre-malignant, and need accurate detection and classification. Current imaging techniques,...

Clinical Impact of Radiologist's Alert System on Patient Care for High-risk Incidental CT Findings: A Machine Learning-Based Risk Factor Analysis.

Academic radiology
RATIONALE AND OBJECTIVES: Efficient communication between radiologists and clinicians ordering computed tomography (CT) examinations is crucial for managing high-risk incidental CT findings (ICTFs). Herein, we introduced a Radiologist's Alert and Pat...