Sleep spindles (SS) and slow waves (SW) serve as indicators of the integrity of thalamocortical connections, which are often compromised in individuals with autism spectrum disorder (ASD). Transcranial magnetic stimulation (TMS) can modulate brain ac...
Transcranial magnetic stimulation (TMS) has emerged as a promising neuromodulation technique with both therapeutic and diagnostic applications. As accurate coil placement is known to be essential for focal stimulation, computational models have been ...
BACKGROUND: Transcranial magnetic stimulation (TMS) is a valuable technique for assessing the function of the motor cortex and cortico-muscular pathways. TMS activates the motoneurons in the cortex, which after transmission along cortico-muscular pat...
The response variability to repetitive transcranial magnetic stimulation (rTMS) challenges the effective use of this treatment option in patients with schizophrenia. This variability may be deciphered by leveraging predictive information in structura...
BACKGROUND: Navigated transcranial magnetic stimulation (nTMS) is a well-established preoperative mapping tool for motor-eloquent glioma surgery. Machine learning (ML) and nTMS may improve clinical outcome prediction and histological correlation.
CONTEXT: Motor deficits are among the most common consequences of incomplete spinal cord injury (SCI). These impairments can affect patients' levels of functioning and quality of life. Combined robotic therapy and non-invasive brain stimulation (NIBS...
Transcranial magnetic stimulation (TMS) has emerged as a prominent non-invasive technique for modulating brain function and treating mental disorders. By generating a high-precision magnetically evoked electric field (E-field) using a TMS coil, it en...
There has been an increasing demand for robotic coil positioning during repetitive transcranial magnetic stimulation (rTMS) treatment. Accurate coil positioning is crucial because rTMS generally targets specific brain regions for both research and cl...
The analysis of motor evoked potentials (MEPs) generated by transcranial magnetic stimulation (TMS) is crucial in research and clinical medical practice. MEPs are characterized by their latency and the treatment of a single patient may require the ch...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.