AIMC Topic: Transcription Factors

Clear Filters Showing 161 to 170 of 206 articles

BertSNR: an interpretable deep learning framework for single-nucleotide resolution identification of transcription factor binding sites based on DNA language model.

Bioinformatics (Oxford, England)
MOTIVATION: Transcription factors are pivotal in the regulation of gene expression, and accurate identification of transcription factor binding sites (TFBSs) at high resolution is crucial for understanding the mechanisms underlying gene regulation. T...

Reinventing gene expression connectivity through regulatory and spatial structural empowerment via principal node aggregation graph neural network.

Nucleic acids research
The intricacies of the human genome, manifested as a complex network of genes, transcend conventional representations in text or numerical matrices. The intricate gene-to-gene relationships inherent in this complexity find a more suitable depiction i...

The developmental and evolutionary characteristics of transcription factor binding site clustered regions based on an explainable machine learning model.

Nucleic acids research
Gene expression is temporally and spatially regulated by the interaction of transcription factors (TFs) and cis-regulatory elements (CREs). The uneven distribution of TF binding sites across the genome poses challenges in understanding how this distr...

SFINN: inferring gene regulatory network from single-cell and spatial transcriptomic data with shared factor neighborhood and integrated neural network.

Bioinformatics (Oxford, England)
MOTIVATION: The rise of single-cell RNA sequencing (scRNA-seq) technology presents new opportunities for constructing detailed cell type-specific gene regulatory networks (GRNs) to study cell heterogeneity. However, challenges caused by noises, techn...

Supervised learning of enhancer-promoter specificity based on genome-wide perturbation studies highlights areas for improvement in learning.

Bioinformatics (Oxford, England)
MOTIVATION: Understanding the rules that govern enhancer-driven transcription remains a central unsolved problem in genomics. Now with multiple massively parallel enhancer perturbation assays published, there are enough data that we can utilize to le...

PTFSpot: deep co-learning on transcription factors and their binding regions attains impeccable universality in plants.

Briefings in bioinformatics
Unlike animals, variability in transcription factors (TFs) and their binding regions (TFBRs) across the plants species is a major problem that most of the existing TFBR finding software fail to tackle, rendering them hardly of any use. This limitatio...

DeepGRNCS: deep learning-based framework for jointly inferring gene regulatory networks across cell subpopulations.

Briefings in bioinformatics
Inferring gene regulatory networks (GRNs) allows us to obtain a deeper understanding of cellular function and disease pathogenesis. Recent advances in single-cell RNA sequencing (scRNA-seq) technology have improved the accuracy of GRN inference. Howe...

BERT-TFBS: a novel BERT-based model for predicting transcription factor binding sites by transfer learning.

Briefings in bioinformatics
Transcription factors (TFs) are proteins essential for regulating genetic transcriptions by binding to transcription factor binding sites (TFBSs) in DNA sequences. Accurate predictions of TFBSs can contribute to the design and construction of metabol...

Deep-Learning Uncovers certain CCM Isoforms as Transcription Factors.

Frontiers in bioscience (Landmark edition)
BACKGROUND: Cerebral Cavernous Malformations (CCMs) are brain vascular abnormalities associated with an increased risk of hemorrhagic strokes. Familial CCMs result from autosomal dominant inheritance involving three genes: (), (), and (). CCM1 and...

Deep Learning for Predicting Gene Regulatory Networks: A Step-by-Step Protocol in R.

Methods in molecular biology (Clifton, N.J.)
Deep learning has emerged as a powerful tool for solving complex problems, including reconstruction of gene regulatory networks within the realm of biology. These networks consist of transcription factors and their associations with genes they regula...