AIMC Topic: Vascular Calcification

Clear Filters Showing 11 to 20 of 83 articles

Application of deep learning in automated localization and interpretation of coronary artery calcification in oncological PET/CT scans.

The international journal of cardiovascular imaging
Coronary artery calcification (CAC) is a key marker of coronary artery disease (CAD) but is often underreported in cancer patients undergoing non-gated CT or PET/CT scans. Traditional CAC assessment requires gated CT scans, leading to increased radia...

Deep learning and radiomics-based vascular calcification characterization in dental cone beam computed tomography as a predictive tool for cardiovascular disease: a proof-of-concept study.

Oral surgery, oral medicine, oral pathology and oral radiology
OBJECTIVES: This study evaluated an automated deep learning method for detecting calcifications in the extracranial and intracranial carotid arteries and vertebral arteries in cone beam computed tomography (CBCT) scans. Additionally, a model utilizin...

Impact of tooth loss and patient characteristics on coronary artery calcium score classification and prediction.

Scientific reports
This study, for the first time, explores the integration of data science and machine learning for the classification and prediction of coronary artery calcium (CAC) scores. It focuses on tooth loss and patient characteristics as key input features to...

Detection of carotid plaques on panoramic radiographs using deep learning.

Journal of dentistry
OBJECTIVES: Panoramic radiographs (PRs) can reveal an incidental finding of atherosclerosis, or carotid artery calcification (CAC), in 3-15% of examined patients. However, limited training in identification of such calcifications among dental profess...

Meta-analysis of deep learning approaches for automated coronary artery calcium scoring: Performance and clinical utility AI in CAC scoring: A meta-analysis: AI in CAC scoring: A meta-analysis.

Computers in biology and medicine
INTRODUCTION: Manual Coronary Artery Calcium (CAC) scoring, crucial for assessing coronary artery disease risk, is time-consuming and variable. Deep learning, particularly through Convolutional Neural Networks (CNNs), promises to automate and enhance...

Automated AI-based coronary calcium scoring using retrospective CT data from SCAPIS is accurate and correlates with expert scoring.

European radiology
OBJECTIVES: Evaluation of the correlation and agreement between AI and semi-automatic evaluations of calcium scoring CT (CSCT) examinations using extensive data from the Swedish CardioPulmonary bio-Image study (SCAPIS).