AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Visual Field Tests

Showing 1 to 10 of 74 articles

Clear Filters

Topographic and quantitative correlation of structure and function using deep learning in subclinical biomarkers of intermediate age-related macular degeneration.

Scientific reports
To examine the morphological impact of deep learning (DL)-quantified biomarkers on point-wise sensitivity (PWS) using microperimetry (MP) and optical coherence tomography (OCT) in intermediate AMD (iAMD). Patients with iAMD were examined by OCT (Spec...

Explainable Deep Learning for Glaucomatous Visual Field Prediction: Artifact Correction Enhances Transformer Models.

Translational vision science & technology
PURPOSE: The purpose of this study was to develop a deep learning approach that restores artifact-laden optical coherence tomography (OCT) scans and predicts functional loss on the 24-2 Humphrey Visual Field (HVF) test.

Glaucoma detection and staging from visual field images using machine learning techniques.

PloS one
PURPOSE: In this study, we investigated the performance of deep learning (DL) models to differentiate between normal and glaucomatous visual fields (VFs) and classify glaucoma from early to the advanced stage to observe if the DL model can stage glau...

Validation of a Visual Field Prediction Tool for Glaucoma: A Multicenter Study Involving Patients With Glaucoma in the United Kingdom.

American journal of ophthalmology
PURPOSE: A previously developed machine-learning approach with Kalman filtering technology accurately predicted the disease trajectory for patients with various glaucoma types and severities using clinical trial data. This study assesses performance ...

Predicting visual field global and local parameters from OCT measurements using explainable machine learning.

Scientific reports
Glaucoma is characterised by progressive vision loss due to retinal ganglion cell deterioration, leading to gradual visual field (VF) impairment. The standard VF test may be impractical in some cases, where optical coherence tomography (OCT) can offe...

PyGlaucoMetrics: A Stacked Weight-Based Machine Learning Approach for Glaucoma Detection Using Visual Field Data.

Medicina (Kaunas, Lithuania)
: Glaucoma (GL) classification is crucial for early diagnosis and treatment, yet relying solely on stand-alone models or International Classification of Diseases (ICD) codes is insufficient due to limited predictive power and inconsistencies in clini...

Structure-Function Correlation of Deep-Learning Quantified Ellipsoid Zone and Retinal Pigment Epithelium Loss and Microperimetry in Geographic Atrophy.

Investigative ophthalmology & visual science
PURPOSE: The purpose of this study was to define structure-function correlation of geographic atrophy (GA) on optical coherence tomography (OCT) and functional testing on microperimetry (MP) based on deep-learning (DL)-quantified spectral-domain OCT ...

Automated learning of glaucomatous visual fields from OCT images using a comprehensive, segmentation-free 3D convolutional neural network model.

Scientific reports
A segmentation-free 3D Convolutional Neural Network (3DCNN) model was adopted to estimate Visual Field (VF) in glaucoma cases using Optical Coherence Tomography (OCT) images. This study, conducted at a university hospital, included 6335 participants ...

High-Accuracy Digitization of Humphrey Visual Field Reports Using Convolutional Neural Networks.

Translational vision science & technology
PURPOSE: Glaucoma is a leading cause of irreversible blindness worldwide, necessitating precise visual field (VF) assessments for effective diagnosis and management. The ability to accurately digitize VF reports is critical for maximizing the utility...