AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Voice Quality

Showing 11 to 20 of 37 articles

Clear Filters

The Effect of the MFCC Frame Length in Automatic Voice Pathology Detection.

Journal of voice : official journal of the Voice Foundation
Automatic voice pathology detection is a research topic, which has gained increasing interest recently. Although methods based on deep learning are becoming popular, the classical pipeline systems based on a two-stage architecture consisting of a fea...

Deep-Learning-Based Representation of Vocal Fold Dynamics in Adductor Spasmodic Dysphonia during Connected Speech in High-Speed Videoendoscopy.

Journal of voice : official journal of the Voice Foundation
OBJECTIVE: Adductor spasmodic dysphonia (AdSD) is a neurogenic dystonia, which causes spasms of the laryngeal muscles. This disorder mainly affects production of connected speech. To understand how AdSD affects vocal fold (VF) movements and hence, th...

Pathological Voice Detection Based on Phase Reconstitution and Convolutional Neural Network.

Journal of voice : official journal of the Voice Foundation
The nonlinear dynamic features can effectively describe the acoustic characteristics of normal and pathological voice. In this paper, the phase space reconstruction and convolution neural network are used to classify the normal and pathological voice...

Automatic GRBAS Scoring of Pathological Voices using Deep Learning and a Small Set of Labeled Voice Data.

Journal of voice : official journal of the Voice Foundation
OBJECTIVES: Auditory-perceptual evaluation frameworks, such as the grade-roughness-breathiness-asthenia-strain (GRBAS) scale, are the gold standard for the quantitative evaluation of pathological voice quality. However, the evaluation is subjective; ...

Detection of Neurogenic Voice Disorders Using the Fisher Vector Representation of Cepstral Features.

Journal of voice : official journal of the Voice Foundation
Neurogenic voice disorders (NVDs) are caused by damage or malfunction of the central or peripheral nervous system that controls vocal fold movement. In this paper, we investigate the potential of the Fisher vector (FV) encoding in automatic detection...

Recognition of the Effect of Vocal Exercises by Fuzzy Triangular Naive Bayes, a Machine Learning Classifier: A Preliminary Analysis.

Journal of voice : official journal of the Voice Foundation
OBJECTIVES: Machine learning (ML) methods allow the development of expert systems for pattern recognition and predictive analysis of intervention outcomes. It has been used in Voice Sciences, mainly to discriminate between healthy and dysphonic voice...

[Current methods of acoustic analysis of voice: a review].

Lin chuang er bi yan hou tou jing wai ke za zhi = Journal of clinical otorhinolaryngology head and neck surgery
Acoustic analysis of the voice, as an objective, quantitative, non-invasive and reproducible method for the evaluation of voice quality, can be used to detect and analyze the acoustic characteristics of normal, artistic or pathological voice. With th...

Different Performances of Machine Learning Models to Classify Dysphonic and Non-Dysphonic Voices.

Journal of voice : official journal of the Voice Foundation
OBJECTIVE: To analyze the performance of 10 different machine learning (ML) classifiers for discrimination between dysphonic and non-dysphonic voices, using a variance threshold as a method for the selection and reduction of acoustic measurements use...

The accuracy of an Online Sequential Extreme Learning Machine in detecting voice pathology using the Malaysian Voice Pathology Database.

Journal of otolaryngology - head & neck surgery = Le Journal d'oto-rhino-laryngologie et de chirurgie cervico-faciale
BACKGROUND: A multidimensional voice quality assessment is recommended for all patients with dysphonia, which requires a patient visit to the otolaryngology clinic. The aim of this study was to determine the accuracy of an online artificial intellige...