AI Medical Compendium Journal:
International journal of pharmaceutics

Showing 1 to 10 of 74 articles

Deep learning-based image classification and quantification models for tablet sticking.

International journal of pharmaceutics
Sticking can significantly affect drug product quality, manufacturing efficiency, and therapeutic efficacy in pharmaceutical tablet manufacturing. This study presents a novel integrated model with a convolutional neural network (CNN) and gray-level c...

Prediction of plasma concentration-time profiles in mice using deep neural network integrated with pharmacokinetic models.

International journal of pharmaceutics
Quantitative structure-activity relationship (QSAR) methods have emerged as powerful tools to streamline non-clinical pharmacokinetic (PK) studies, with extensive evidence demonstrating their potential to predict key in vivo PK parameters such as cle...

A new era of psoriasis treatment: Drug repurposing through the lens of nanotechnology and machine learning.

International journal of pharmaceutics
Psoriasis is a persistent inflammatory skin disorder characterized by hyper-proliferation and abnormal epidermal differentiation. Conventional treatments such as; topical therapies, phototherapy, systemic immune modulators, and biologics aim to relie...

Scale-independent solid fraction prediction in dry granulation process using a gray-box model integrating machine learning model and Johanson model.

International journal of pharmaceutics
We propose a novel approach for predicting the solid fraction after roller compaction processes. It is crucial to predict and control the solid fraction, as it has a significant impact on the product quality. The solid fraction can be theoretically p...

Deep learning-based defect detection in film-coated tablets using a convolutional neural network.

International journal of pharmaceutics
Film-coating is a critical step in pharmaceutical manufacturing. Traditional visual inspections for film-coated tablet defect assessment are subjective, inefficient, and labor-intensive. We propose a novel approach utilizing machine learning and imag...

Exploring a new paradigm for serum-accessible component rules of natural medicines using machine learning and development and validation of a direct predictive model.

International journal of pharmaceutics
In the field of pharmaceutical research, Lipinski's Rule of Five (RO5) was once widely regarded as the prevailing standard for the development of novel drugs. Despite the fact that an increasing number of recently approved drugs no longer adhere to t...

A deep learning approach to perform defect classification of freeze-dried product.

International journal of pharmaceutics
Cosmetic inspection of freeze-dried products is an important part of the post-manufacturing quality control process. Traditionally done by human visual inspection, this method poses typical challenges and shortcomings that can be addressed with innov...

How can language models assist with pharmaceuticals manufacturing deviations and investigations?

International journal of pharmaceutics
Large Language Models (LLM) such as the Generative-Pretrained-Transformer (GPT) and Large-Language-Model-Meta-AI (LLaMA) have attracted much attention. There is strong evidence that these models perform remarkably well in various natural language pro...

Modelling the effect of base component properties and processing conditions on mixture products using probabilistic, knowledge-guided neural networks.

International journal of pharmaceutics
Development of materials by mixing different base components is a widespread methodology to create materials with improved properties compared to those of its base components. However, efficient determination of the properties of mixture-based materi...