PURPOSE: To develop an anomaly detection system in PET/CT with the tracer F-fluorodeoxyglucose (FDG) that requires only normal PET/CT images for training and can detect abnormal FDG uptake at any location in the chest region.
PURPOSE: The purpose of this study was to evaluate whether deep learning reconstruction (DLR) improves the image quality of intracranial magnetic resonance angiography (MRA) at 1.5 T.
PURPOSE: The purposes of this experimental study were to compare the quantitative and qualitative visibility of in-stent restenosis between conventional-resolution CT (CRCT) and ultra-high-resolution CT (U-HRCT) and to investigate the effects of the ...
PURPOSE: To improve the image quality of inflated fixed cadaveric human lungs by utilizing ultra-high-resolution computed tomography (U-HRCT) as a training dataset for super-resolution processing using deep learning (SR-DL).
PURPOSE: To evaluate whether early chest computed tomography (CT) lesions quantified by an artificial intelligence (AI)-based commercial software and blood test values at the initial presentation can differentiate the severity of COVID-19 pneumonia.
PURPOSE: To develop convolutional neural network (CNN) models for differentiating intrahepatic cholangiocarcinoma (ICC) from hepatocellular carcinoma (HCC) and predicting histopathological grade of HCC.
The applications of artificial intelligence (AI), including machine learning and deep learning, in the field of pancreatic disease imaging are rapidly expanding. AI can be used for the detection of pancreatic ductal adenocarcinoma and other pancreati...
PURPOSE: Convolutional neural networks (CNNs) show potential for delineating cancers on contrast-enhanced MRI (ce-MRI) but there are clinical scenarios in which administration of contrast is not desirable. We investigated performance of the CNN for d...