AI Medical Compendium Journal:
NeuroImage

Showing 31 to 40 of 380 articles

Multiclass classification of Alzheimer's disease prodromal stages using sequential feature embeddings and regularized multikernel support vector machine.

NeuroImage
The detection of patients in the cognitive normal (CN), mild cognitive impairment (MCI), and Alzheimer's disease (AD) stages of neurodegeneration is crucial for early treatment interventions. However, the heterogeneity of MCI data samples poses a cha...

Validation of SynthSeg segmentation performance on CT using paired MRI from radiotherapy patients.

NeuroImage
INTRODUCTION: Manual segmentation of medical images is labor intensive and especially challenging for images with poor contrast or resolution. The presence of disease exacerbates this further, increasing the need for an automated solution. To this ex...

A simple but tough-to-beat baseline for fMRI time-series classification.

NeuroImage
Current neuroimaging studies frequently use complex machine learning models to classify human fMRI data, distinguishing healthy and disordered brains, often to validate new methods or enhance prediction accuracy. Yet, where prediction accuracy is a c...

MGA-Net: A novel mask-guided attention neural network for precision neonatal brain imaging.

NeuroImage
In this study, we introduce MGA-Net, a novel mask-guided attention neural network, which extends the U-net model for precision neonatal brain imaging. MGA-Net is designed to extract the brain from other structures and reconstruct high-quality brain i...

Comparative evaluation of interpretation methods in surface-based age prediction for neonates.

NeuroImage
Significant changes in brain morphology occur during the third trimester of gestation. The capability of deep learning in leveraging these morphological features has enhanced the accuracy of brain age predictions for this critical period. Yet, the op...

Deep learning enables accurate brain tissue microstructure analysis based on clinically feasible diffusion magnetic resonance imaging.

NeuroImage
Diffusion magnetic resonance imaging (dMRI) allows non-invasive assessment of brain tissue microstructure. Current model-based tissue microstructure reconstruction techniques require a large number of diffusion gradients, which is not clinically feas...

Separating group- and individual-level brain signatures in the newborn functional connectome: A deep learning approach.

NeuroImage
Recent studies indicate that differences in cognition among individuals may be partially attributed to unique brain wiring patterns. While functional connectivity (FC)-based fingerprinting has demonstrated high accuracy in identifying adults, early s...

XDL-ESI: Electrophysiological Sources Imaging via explainable deep learning framework with validation on simultaneous EEG and iEEG.

NeuroImage
Electroencephalography (EEG) or Magnetoencephalography (MEG) source imaging aims to estimate the underlying activated brain sources to explain the observed EEG/MEG recordings. Solving the inverse problem of EEG/MEG Source Imaging (ESI) is challenging...

Unveiling the core functional networks of cognition: An ontology-guided machine learning approach.

NeuroImage
Deciphering the functional architecture that underpins diverse cognitive functions is fundamental quest in neuroscience. In this study, we employed an innovative machine learning framework that integrated cognitive ontology with functional connectivi...

RS-Net: An end-to-end deep learning framework for rodent skull stripping in multi-center brain MRI.

NeuroImage
Skull stripping is a crucial preprocessing step in magnetic resonance imaging (MRI), where experts manually create brain masks. This labor-intensive process heavily relies on the annotator's expertise, as automation faces challenges such as low tissu...