AIM: To train a machine learning algorithm to identify eye movement from electrooculography (EOG) in cardiac arrest (CA) patients. Neuroprognostication of comatose post-CA patients is challenging, requiring novel biomarkers to guide decision making. ...
OBJECTIVE: To compare the performance of three artificial intelligence (AI) classification strategies against manually classified National Institutes of Health (NIH) cardiac arrest (CA) grants, with the goal of developing a publicly available tool to...
UNLABELLED: Out-of-hospital cardiac arrest (OHCA) is a critical condition with low survival rates. In patients with a return of spontaneous circulation, brain injury is a leading cause of death. In this study, we propose an interpretable machine lear...
AIM OF THE STUDY: We evaluated whether an artificial intelligence (AI)-driven robot cardiopulmonary resuscitation (CPR) could improve hemodynamic parameters and clinical outcomes.
AIM OF THE STUDY: This study aimed to develop an artificial intelligence (AI) model capable of predicting shockable rhythms from electrocardiograms (ECGs) with compression artifacts using real-world data from emergency department (ED) settings. Addit...
AIM: This study introduces RealCAC-Net, an artificial intelligence (AI) system, to quantify carotid artery compressibility (CAC) and determine the return of spontaneous circulation (ROSC) during cardiopulmonary resuscitation.
INTRODUCTION: Accurate prediction of complications often informs shared decision-making. Derived over 10 years ago to enhance prediction of intra/post-operative myocardial infarction and cardiac arrest (MI/CA), the Gupta score has been criticized for...