AIMC Topic: Adenomatous Polyps

Clear Filters Showing 1 to 10 of 15 articles

A novel approach to overcome black box of AI for optical diagnosis in colonoscopy.

Scientific reports
Accurate real-time optical diagnosis that distinguishes neoplastic from non-neoplastic colorectal lesions during colonoscopy can lower the costs of pathological assessments, prevent unnecessary polypectomies, and help avoid adverse events. Using a mu...

A Boundary-Enhanced Decouple Fusion Segmentation Network for Diagnosis of Adenomatous Polyps.

Journal of imaging informatics in medicine
Adenomatous polyps, a common premalignant lesion, are often classified into villous adenoma (VA) and tubular adenoma (TA). VA has a higher risk of malignancy, whereas TA typically grows slowly and has a lower likelihood of cancerous transformation. A...

The value of CT radiomics combined with deep transfer learning in predicting the nature of gallbladder polypoid lesions.

Acta radiologica (Stockholm, Sweden : 1987)
BACKGROUND: Computed tomography (CT) radiomics combined with deep transfer learning was used to identify cholesterol and adenomatous gallbladder polyps that have not been well evaluated before surgery.

Artificial intelligence-based endoscopic diagnosis of colorectal polyps using residual networks.

PloS one
Convolutional neural networks (CNNs) are widely used for artificial intelligence (AI)-based image classification. Residual network (ResNet) is a new technology that facilitates the accuracy of image classification by CNN-based AI. In this study, we d...

Lower Adenoma Miss Rate of Computer-Aided Detection-Assisted Colonoscopy vs Routine White-Light Colonoscopy in a Prospective Tandem Study.

Gastroenterology
BACKGROUND AND AIMS: Up to 30% of adenomas might be missed during screening colonoscopy-these could be polyps that appear on-screen but are not recognized by endoscopists or polyps that are in locations that do not appear on the screen at all. Comput...

Polyp detection algorithm can detect small polyps: Ex vivo reading test compared with endoscopists.

Digestive endoscopy : official journal of the Japan Gastroenterological Endoscopy Society
BACKGROUND AND STUDY AIMS: Small polyps are occasionally missed during colonoscopy. This study was conducted to validate the diagnostic performance of a polyp-detection algorithm to alert endoscopists to unrecognized lesions.

Improved Accuracy in Optical Diagnosis of Colorectal Polyps Using Convolutional Neural Networks with Visual Explanations.

Gastroenterology
BACKGROUND & AIMS: Narrow-band imaging (NBI) can be used to determine whether colorectal polyps are adenomatous or hyperplastic. We investigated whether an artificial intelligence (AI) system can increase the accuracy of characterizations of polyps b...

An overview of deep learning algorithms and water exchange in colonoscopy in improving adenoma detection.

Expert review of gastroenterology & hepatology
: Among the Gastrointestinal (GI) Endoscopy Editorial Board top 10 topics in advances in endoscopy in 2018, water exchange colonoscopy and artificial intelligence were both considered important advances. Artificial intelligence holds the potential to...

Challenges Facing the Detection of Colonic Polyps: What Can Deep Learning Do?

Medicina (Kaunas, Lithuania)
Colorectal cancer (CRC) is one of the most common causes of cancer mortality in the world. The incidence is related to increases with age and western dietary habits. Early detection through screening by colonoscopy has been proven to effectively redu...