AIMC Topic: Adolescent

Clear Filters Showing 141 to 150 of 3145 articles

Automatic detection of developmental stages of molar teeth with deep learning.

BMC oral health
BACKGROUND: The aim was to fully automate molar teeth developmental staging and to comprehensively analyze a wide range of deep learning models' performances for molar tooth germ detection on panoramic radiographs.

Can we use lower extremity joint moments predicted by the artificial intelligence model during walking in patients with cerebral palsy in the clinical gait analysis?

PloS one
Several studies have highlighted the advantages of employing artificial intelligence (AI) models in gait analysis. However, the credibility and practicality of integrating these models into clinical gait routines remain uncertain. This study critical...

Using machine learning to identify features associated with different types of self-injurious behaviors in autistic youth.

Psychological medicine
BACKGROUND: Self-injurious behaviors (SIB) are common in autistic people. SIB is mainly studied as a broad category, rather than by specific SIB types. We aimed to determine associations of distinct SIB types with common psychiatric, emotional, medic...

Investigation of the relationship between medical artificial intelligence readiness and individual innovativeness levels in nursing students.

Nurse education today
AIM: This study was conducted to identify nursing students' medical artificial intelligence readiness and individual innovativeness levels, to examine the relationship between these two concepts and to determine the variables that create a significan...

Multivariate Classification of Adolescent Major Depressive Disorder Using Whole-brain Functional Connectivity.

Academic radiology
RATIONALE AND OBJECTIVES: Adolescent major depressive disorder (MDD) is a serious mental health condition that has been linked to abnormal functional connectivity (FC) patterns within the brain. However, whether FC could be used as a potential biomar...

O blood usage trends in the pediatric population 2015-2019: A multi-institutional analysis.

Transfusion
BACKGROUND: In 2019, AABB released the bulletin "Recommendations on the Use of Group O Red Blood Cells" in which the recommendations about pediatric and neonatal blood transfusions were limited. Eight U.S. pediatric hospitals sought to determine tren...

Predicting changes of incisor and facial profile following orthodontic treatment: a machine learning approach.

Head & face medicine
BACKGROUND: Facial aesthetics is one of major motivations for seeking orthodontic treatment. However, even for experienced professionals, the impact and extent of incisor and soft tissue changes remain largely empirical. With the application of inter...

Machine learning in lymphocyte and immune biomarker analysis for childhood thyroid diseases in China.

BMC pediatrics
OBJECTIVE: This study aims to characterize and analyze the expression of representative biomarkers like lymphocytes and immune subsets in children with thyroid disorders. It also intends to develop and evaluate a machine learning model to predict if ...

Identification of testicular cancer with T2-weighted MRI-based radiomics and automatic machine learning.

BMC cancer
BACKGROUND: Distinguishing between benign and malignant testicular lesions on clinical magnetic resonance imaging (MRI) is crucial for guiding treatment planning. However, conventional MRI-based radiomics to identify testicular cancer requires expert...

Footwork recognition and trajectory tracking in track and field based on image processing.

Scientific reports
In track and field sports, footwork can greatly affect the effect and performance of sports. Accurate footwork can effectively improve the performance of professional athletes, and for ordinary trainers, it can reduce the probability of training inju...