PURPOSE: Machine learning is a powerful tool to develop algorithms for clinical diagnosis. However, standard machine learning algorithms are not perfectly suited for clinical data since the data are interconnected and may contain time series. As show...
Various plant attributes, such as growing environment, growth cycle, and ecological distribution, can provide support to fields like agricultural production and biodiversity. This information is widely dispersed in texts. Manual extraction of this in...
Accurate risk assessment in international trade settlement has become increasingly critical as global financial transactions grow in scale and complexity. This study proposes a hybrid model-Genetic Algorithm-optimized Fuzzy Neural Network (GA-FNN)-to...
The impact of various charge mutations on the second osmotic virial coefficient was examined for three model therapeutic monoclonal antibodies (MAbs) at representative formulation pH values by using coarse-grained (CG) molecular modeling. The wild-ty...
Implementing counter-pulsation (CP) control in pulsatile extracorporeal membrane oxygenator (p-ECMO) systems offers a refined approach to mitigate risks commonly associated with conventional ECMOs. To attain CP between the p-ECMO and heart, accurate ...
Cucumber disease detection under complex agricultural conditions faces significant challenges due to multi-scale variation, background clutter, and hardware limitations. This study proposes YOLO-Cucumber, an improved lightweight detection algorithm b...
The selection of the most efficient actuator for biohybrid robots necessitates the implementation of precise and reliable decision-making (DM) methods. Dynamic aggregation operators (AOs) provide flexibility and consistency in DM by embracing time-de...
Lung and colon cancers (LCC) are among the foremost reasons for human death and disease. Early analysis of this disorder contains various tests, namely ultrasound (US), magnetic resonance imaging (MRI), and computed tomography (CT). Despite analytica...
Alzheimer's Disease (AD) is a progressive neurodegenerative disorder marked by neuronal loss, leading to cognitive and behavioral decline. With the aging global population, AD incidence and its socioeconomic burden are increasing. Developing effectiv...
Neonatal mortality poses a critical challenge in global health, particularly in low- and middle-income countries. Leveraging advancements in technology, such as machine learning (ML) algorithms, offers the potential to improve neonatal care by enabli...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.