AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Allografts

Showing 1 to 10 of 15 articles

Clear Filters

Early Projection of Kidney Allograft Rejection Through Deep Learning: A Way Forward.

Experimental and clinical transplantation : official journal of the Middle East Society for Organ Transplantation

Artificial intelligence and algorithmic computational pathology: an introduction with renal allograft examples.

Histopathology
Whole slide imaging, which is an important technique in the field of digital pathology, has recently been the subject of increased interest and avenues for utilisation, and with more widespread whole slide image (WSI) utilisation, there will also be ...

Deep learning-enabled assessment of cardiac allograft rejection from endomyocardial biopsies.

Nature medicine
Endomyocardial biopsy (EMB) screening represents the standard of care for detecting allograft rejections after heart transplant. Manual interpretation of EMBs is affected by substantial interobserver and intraobserver variability, which often leads t...

Deep learning-enabled classification of kidney allograft rejection on whole slide histopathologic images.

Frontiers in immunology
BACKGROUND: Diagnosis of kidney transplant rejection currently relies on manual histopathological assessment, which is subjective and susceptible to inter-observer variability, leading to limited reproducibility. We aim to develop a deep learning sys...

Novel non-invasive method for urine mapping: Deep-learning-enabled SERS spectroscopy for the rapid differential detection of kidney allograft injury.

Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy
The kidney allograft has been under continuous attack from diverse injuries since the very beginning of organ procurement, leading to a gradual decline in function, chronic fibrosis, and allograft loss. It is vital to routinely and precisely monitor ...

Predicting kidney allograft survival with explainable machine learning.

Transplant immunology
INTRODUCTION: Despite significant progress over the last decades in the survival of kidney allografts, several risk factors remain contributing to worsening kidney function or even loss of transplants. We aimed to evaluate a new machine learning meth...

Using Natural Language Processing and Machine Learning to classify the status of kidney allograft in Electronic Medical Records written in Spanish.

PloS one
INTRODUCTION: Accurate identification of graft loss in Electronic Medical Records of kidney transplant recipients is essential but challenging due to inconsistent and not mandatory International Classification of Diseases (ICD) codes. We developed an...

Utilizing Machine Learning to Predict Liver Allograft Fibrosis by Leveraging Clinical and Imaging Data.

Clinical transplantation
BACKGROUND AND AIM: Liver transplant (LT) recipients may succumb to graft-related pathologies, contributing to graft fibrosis (GF). Current methods to diagnose GF are limited, ranging from procedural-related complications to low accuracy. With recent...