AIMC Topic: Antineoplastic Agents

Clear Filters Showing 31 to 40 of 490 articles

SGCLMD: Signed graph-based contrastive learning model for predicting somatic mutation-drug association.

Computers in biology and medicine
Somatic mutations could influence critical cellular processes, leading to uncontrolled cell growth and tumor formation. Understanding the intricate interactions between somatic mutations and drugs was crucial for advancing our knowledge of the underl...

Pan-cancer analysis of CDC7 in human tumors: Integrative multi-omics insights and discovery of novel marine-based inhibitors through machine learning and computational approaches.

Computers in biology and medicine
Cancer remains a significant global health challenge, with the Cell Division Cycle 7 (CDC7) protein emerging as a potential therapeutic target due to its critical role in tumor proliferation, survival, and resistance. However, a comprehensive analysi...

Denoised recurrence label-based deep learning for prediction of postoperative recurrence risk and sorafenib response in HCC.

BMC medicine
BACKGROUND: Pathological images of hepatocellular carcinoma (HCC) contain abundant tumor information that can be used to stratify patients. However, the links between histology images and the treatment response have not been fully unveiled.

Unsupervised learning to identify symptom clusters in older adults undergoing chemotherapy.

Journal of geriatric oncology
INTRODUCTION: Unsupervised machine learning (ML) approaches such as clustering have not been commonly applied to patient-reported data. This study describes ML methods to explore and describe patient-reported symptom trajectories in older adults rece...

Cancer Drug Sensitivity Prediction Based on Deep Transfer Learning.

International journal of molecular sciences
In recent years, many approved drugs have been discovered using phenotypic screening, which elaborates the exact mechanisms of action or molecular targets of drugs. Drug susceptibility prediction is an important type of phenotypic screening. Large-sc...

Predicting the anticancer activity of indole derivatives: A novel GP-tree-based QSAR model optimized by ALO with insights from molecular docking and decision-making methods.

Computers in biology and medicine
Indole derivatives have demonstrated significant potential as anticancer agents; however, the complexity of their structure-activity relationships and the high dimensionality of molecular descriptors present challenges in the drug discovery process. ...

Continuous nursing symptom management in cancer chemotherapy patients using deep learning.

Scientific reports
To assess the efficacy of a deep learning platform for managing symptoms in chemotherapy patients, aiming to enhance their quality of life. A non-randomized controlled trial was conducted from September 2022 to March 2024, involving 144 chemotherapy ...

MDTL-ACP: Anticancer Peptides Prediction Based on Multi-Domain Transfer Learning.

IEEE journal of biomedical and health informatics
Anticancer peptides (ACPs) have emerged as one of the most promising therapeutic agents for cancer treatment. They are bioactive peptides featuring broad-spectrum activity and low drug-resistance. The discovery of ACPs via traditional biochemical met...

Decoding Drug Response With Structurized Gridding Map-Based Cell Representation.

IEEE journal of biomedical and health informatics
A thorough understanding of cell-line drug response mechanisms is crucial for drug development, repurposing, and resistance reversal. While targeted anticancer therapies have shown promise, not all cancers have well-established biomarkers to stratify...

TARSL: Triple-Attention Cross-Network Representation Learning to Predict Synthetic Lethality for Anti-Cancer Drug Discovery.

IEEE journal of biomedical and health informatics
Cancer is a multifaceted disease that results from co-mutations of multi biological molecules. A promising strategy for cancer therapy involves in exploiting the phenomenon of Synthetic Lethality (SL) by targeting the SL partner of cancer gene. Since...