AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Artifacts

Showing 61 to 70 of 645 articles

Clear Filters

Joint suppression of cardiac bSSFP cine banding and flow artifacts using twofold phase-cycling and a dual-encoder neural network.

Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance
BACKGROUND: Cardiac balanced steady state free precession (bSSFP) cine imaging suffers from banding and flow artifacts induced by off-resonance. The work aimed to develop a twofold phase cycling sequence with a neural network-based reconstruction (2P...

4DCT image artifact detection using deep learning.

Medical physics
BACKGROUND: Four-dimensional computed tomography (4DCT) is an es sential tool in radiation therapy. However, the 4D acquisition process may cause motion artifacts which can obscure anatomy and distort functional measurements from CT scans.

Learning to predict perceptual visibility of rendering deterioration in computer games.

Scientific reports
Contemporary computer gaming affords players the agency to manually tailor rendering settings, a capability crucial for optimizing computational demands following their hardware performance. Specifically, adjustments to texture resolution, shadow map...

CT metal artefact reduction for hip and shoulder implants using novel algorithms and machine learning: A systematic review with pairwise and network meta-analyses.

Radiography (London, England : 1995)
INTRODUCTION: Many tools have been developed to reduce metal artefacts in computed tomography (CT) images resulting from metallic prosthesis; however, their relative effectiveness in preserving image quality is poorly understood. This paper reviews t...

Deep learning corrects artifacts in RASER MRI profiles.

Magnetic resonance imaging
A newly developed magnetic resonance imaging (MRI) approach is based on "Radiowave amplification by the stimulated emission of radiation" (RASER). RASER MRI potentially allows for higher resolution, is inherently background-free, and does not require...

Automated detection of motion artifacts in brain MR images using deep learning.

NMR in biomedicine
Quality assessment, including inspecting the images for artifacts, is a critical step during magnetic resonance imaging (MRI) data acquisition to ensure data quality and downstream analysis or interpretation success. This study demonstrates a deep le...

Clinical Pilot of a Deep Learning Elastic Registration Algorithm to Improve Misregistration Artifact and Image Quality on Routine Oncologic PET/CT.

Academic radiology
RATIONALE AND OBJECTIVES: Misregistration artifacts between the PET and attenuation correction CT (CTAC) exams can degrade image quality and cause diagnostic errors. Deep learning (DL)-warped elastic registration methods have been proposed to improve...

DPI-MoCo: Deep Prior Image Constrained Motion Compensation Reconstruction for 4D CBCT.

IEEE transactions on medical imaging
4D cone-beam computed tomography (CBCT) plays a critical role in adaptive radiation therapy for lung cancer. However, extremely sparse sampling projection data will cause severe streak artifacts in 4D CBCT images. Existing deep learning (DL) methods ...