BACKGROUND: Four-dimensional computed tomography (4DCT) is an es sential tool in radiation therapy. However, the 4D acquisition process may cause motion artifacts which can obscure anatomy and distort functional measurements from CT scans.
BACKGROUND: 3D brachial plexus MRI scanning is prone to examination failure due to the lengthy scan times, which can lead to patient discomfort and motion artifacts. Our purpose is to investigate the efficacy of artificial intelligence-assisted compr...
Contemporary computer gaming affords players the agency to manually tailor rendering settings, a capability crucial for optimizing computational demands following their hardware performance. Specifically, adjustments to texture resolution, shadow map...
Machine learning algorithms have brought remarkable advancements in detecting motion artifacts (MAs) from the photoplethysmogram (PPG) with no measured or synthetic reference data. However, no study has provided a synthesis of these methods, let alon...
Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance
Nov 7, 2024
BACKGROUND: Cardiac balanced steady state free precession (bSSFP) cine imaging suffers from banding and flow artifacts induced by off-resonance. The work aimed to develop a twofold phase cycling sequence with a neural network-based reconstruction (2P...
PURPOSE: To assess the image quality of a modified Fast three-dimensional (Fast 3D) mode wheel with sequential data filling (mFast 3D wheel) combined with a deep learning denoising technique (Advanced Intelligent Clear-IQ Engine [AiCE]) in contrast-e...
INTRODUCTION: Many tools have been developed to reduce metal artefacts in computed tomography (CT) images resulting from metallic prosthesis; however, their relative effectiveness in preserving image quality is poorly understood. This paper reviews t...
RATIONALE AND OBJECTIVES: Misregistration artifacts between the PET and attenuation correction CT (CTAC) exams can degrade image quality and cause diagnostic errors. Deep learning (DL)-warped elastic registration methods have been proposed to improve...
PURPOSE: To compare the quality of deep learning image reconstructed (DLIR) virtual monochromatic images (VMI) and material density (MD) iodine images from dual-energy computed tomography (DECT) for the evaluation of head and neck neoplasms with CT s...
IEEE transactions on bio-medical engineering
Oct 25, 2024
OBJECTIVE: To remove signal contamination in electroencephalogram (EEG) traces coming from ocular, motion, and muscular artifacts which degrade signal quality. To do this in real-time, with low computational overhead, on a mobile platform in a channe...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.