AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Atrial Fibrillation

Showing 11 to 20 of 303 articles

Clear Filters

Clinical Assessment of a Lightweight CNN Model for Real-Time Atrial Fibrillation Prediction in Continuous Wearable Monitoring.

Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Atrial Fibrillation (AFib) represents a prevalent cardiac arrhythmia associated with substantial risk for affected individuals. The integration of wearable devices, coupled with advanced predictive models, opens pathways for non-invasive and real-tim...

Discrimination between RA and LA Sinus Rhythms using machine learning approach.

Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Atrial fibrillation (AF) is a common cardiac disease that potentially leads to fatal conditions. Machine Learning (ML) classification methods are widely used to distinguish between sinus rhythm and AF for post-ablation rhythms in ECG. However, intrac...

ECG Abnormality Detection Using MIMIC-IV-ECG Data Via Supervised Contrastive Learning.

Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Electrocardiogram data provide a tremendous opportunity for the detection of various types of cardiac arrhythmia. Recent advancement in ubiquitous wearable devices with incorporated ECG sensors offers an opportunity for a real-time monitoring system ...

Machine Learning Predicts Bleeding Risk in Atrial Fibrillation Patients on Direct Oral Anticoagulant.

The American journal of cardiology
Predicting major bleeding in nonvalvular atrial fibrillation (AF) patients on direct oral anticoagulants (DOACs) is crucial for personalized care. Alternatives like left atrial appendage closure devices lower stroke risk with fewer nonprocedural blee...

[Prediction method of paroxysmal atrial fibrillation based on multimodal feature fusion].

Sheng wu yi xue gong cheng xue za zhi = Journal of biomedical engineering = Shengwu yixue gongchengxue zazhi
The risk prediction of paroxysmal atrial fibrillation (PAF) is a challenge in the field of biomedical engineering. This study integrated the advantages of machine learning feature engineering and end-to-end modeling of deep learning to propose a PAF ...

Atrial fibrillation risk model based on LASSO and SVM algorithms and immune infiltration of key mitochondrial energy metabolism genes.

Scientific reports
Atrial fibrillation (AF) is a predominant cardiac arrhythmia with unclear etiology. This study used bioinformatics and machine learning to explore the relationship between mitochondrial energy metabolism-related genes (MEMRGs) and immune infiltration...

Explainable paroxysmal atrial fibrillation diagnosis using an artificial intelligence-enabled electrocardiogram.

The Korean journal of internal medicine
BACKGROUND/AIMS: Atrial fibrillation (AF) significantly contributes to global morbidity and mortality. Paroxysmal atrial fibrillation (PAF) is particularly common among patients with cryptogenic strokes or transient ischemic attacks and has a silent ...

Utilizing 12-lead electrocardiogram and machine learning to retrospectively estimate and prospectively predict atrial fibrillation and stroke risk.

Computers in biology and medicine
BACKGROUND: The stroke risk in patients with subclinical atrial fibrillation (AF) is underestimated. By identifying patients at high risk of embolic stroke, health-care professionals can make more informed decisions regarding anticoagulation treatmen...

MLFusion: Multilevel Data Fusion using CNNs for atrial fibrillation detection.

Computers in biology and medicine
Data fusion, involving the simultaneous integration of signals from multiple sensors, is an emerging field that facilitates more accurate inferences in instrumentation applications. This paper presents a novel fusion methodology for multi-sensor mult...

External validation of a machine learning-based classification algorithm for ambulatory heart rhythm diagnostics in pericardioversion atrial fibrillation patients using smartphone photoplethysmography: the SMARTBEATS-ALGO study.

Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology
AIMS: The aim of this study was to perform an external validation of an automatic machine learning (ML) algorithm for heart rhythm diagnostics using smartphone photoplethysmography (PPG) recorded by patients with atrial fibrillation (AF) and atrial f...