AIMC Topic: Bayes Theorem

Clear Filters Showing 71 to 80 of 1774 articles

A clinical data-driven machine learning approach for predicting the effectiveness of piperacillin-tazobactam in treating lower respiratory tract infections.

BMC pulmonary medicine
BACKGROUND: In hospitalized patients, inadequate antibiotic dosage leading to bacterial resistance and increased antimicrobial use intensity due to overexposure to antibiotics are common problems. In the present study, we constructed a machine learni...

Use machine learning to predict treatment outcome of early childhood caries.

BMC oral health
BACKGROUND: Early childhood caries (ECC) is a major oral health problem among preschool children that can significantly influence children's quality of life. Machine learning can accurately predict the treatment outcome but its use in ECC management ...

AI-based personalized real-time risk prediction for behavioral management in psychiatric wards using multimodal data.

International journal of medical informatics
BACKGROUND: Suicide is a major global health issue, with approximately 700,000 deaths annually (WHO). In psychiatric wards, managing harmful behaviors such as suicide, self-harm, and aggression is essential to ensure patient and staff safety. However...

Integrating partial least square structural equation modelling and machine learning for causal exploration of environmental phenomena.

Environmental research
Understanding the causes of environmental phenomena is crucial for promoting positive outcomes and mitigating negative ones. Partial least squares structural equation modelling (PLS-SEM) is becoming a valuable tool for evaluating causal relationships...

Application and design of a decision-making model in ethical dilemma for self-driving cars.

Scientific reports
Artificial intelligence (AI) has promoted application and development of self-driving cars. However, when self-driving cars encounter ethical dilemma, it is still hard to make a satisficing and clear decision-making by these present moral rules and m...

Explainable deep learning models for predicting water pipe failures.

Journal of environmental management
Failures within water distribution networks (WDNs) lead to significant environmental and economic impacts. While existing research has established various predictive models for pipe failures, there remains a lack of studies focusing on the probabilit...

Construction and validation of a predictive model for meningoencephalitis in pediatric scrub typhus based on machine learning algorithms.

Emerging microbes & infections
To retrospectively analyze the clinical characteristics of pediatric scrub typhus (ST) with meningoencephalitis (STME) and to construct and validate predictive models using machine learning.Clinical data were collected from 100 cases of pediatric STM...

Interpretable machine learning unveils key predictors and default values in an expanded database of human in vitro dermal absorption studies with pesticides.

Regulatory toxicology and pharmacology : RTP
The skin is the main route of exposure to plant protection products for operators, workers, residents, and bystanders. Assessing dermal absorption is key for evaluating pesticide exposure. The initial approach to risk assessment involves using defaul...

miRNA-Based Diagnosis of Schizophrenia Using Machine Learning.

International journal of molecular sciences
Diagnostic practices for schizophrenia are unreliable due to the lack of a stable biomarker. However, machine learning holds promise in aiding in the diagnosis of schizophrenia and other neurological disorders. Dysregulated miRNAs were extracted from...

SeizyML: An Application for Semi-Automated Seizure Detection Using Interpretable Machine Learning Models.

Neuroinformatics
Despite the vast number of publications reporting seizures and the reliance of the field on accurate seizure detection, there is a lack of open-source software tools in the scientific community for automating seizure detection based on electrographic...