AIMC Topic: Body Mass Index

Clear Filters Showing 71 to 80 of 243 articles

Multifactor Prediction of Embryo Transfer Outcomes Based on a Machine Learning Algorithm.

Frontiers in endocrinology
fertilization-embryo transfer (IVF-ET) technology make it possible for infertile couples to conceive a baby successfully. Nevertheless, IVF-ET does not guarantee success. Frozen embryo transfer (FET) is an important supplement to IVF-ET. Many factor...

Artificial neural network and decision tree models of post-stroke depression at 3 months after stroke in patients with BMI ≥ 24.

Journal of psychosomatic research
OBJECTIVE: Previous studies have shown that excess weight (including obesity and overweight) can increase the risk of cardiovascular, cerebrovascular and other diseases, but there is no study on the incidence of post-stroke depression (PSD) and relat...

Polycystic ovary syndrome: clinical and laboratory variables related to new phenotypes using machine-learning models.

Journal of endocrinological investigation
PURPOSE: Polycystic Ovary Syndrome (PCOS) is the most frequent endocrinopathy in women of reproductive age. Machine learning (ML) is the area of artificial intelligence with a focus on predictive computing algorithms. We aimed to define the most rele...

Detection of sarcopenic obesity and prediction of long-term survival in patients with gastric cancer using preoperative computed tomography and machine learning.

Journal of surgical oncology
BACKGROUND: Previous studies evaluating the prognostic value of computed tomography (CT)-derived body composition data have included few patients. Thus, we assessed the prevalence and prognostic value of sarcopenic obesity in a large population of ga...

Machine learning approaches to predict gestational age in normal and complicated pregnancies via urinary metabolomics analysis.

Scientific reports
The elucidation of dynamic metabolomic changes during gestation is particularly important for the development of methods to evaluate pregnancy status or achieve earlier detection of pregnancy-related complications. Some studies have constructed model...

Machine learning-based approach for disease severity classification of carpal tunnel syndrome.

Scientific reports
Identifying the severity of carpal tunnel syndrome (CTS) is essential to providing appropriate therapeutic interventions. We developed and validated machine-learning (ML) models for classifying CTS severity. Here, 1037 CTS hands with 11 variables eac...

Multi-muscle deep learning segmentation to automate the quantification of muscle fat infiltration in cervical spine conditions.

Scientific reports
Muscle fat infiltration (MFI) has been widely reported across cervical spine disorders. The quantification of MFI requires time-consuming and rater-dependent manual segmentation techniques. A convolutional neural network (CNN) model was trained to se...

Estimated Artificial Neural Network Modeling of Maximal Oxygen Uptake Based on Multistage 10-m Shuttle Run Test in Healthy Adults.

International journal of environmental research and public health
We aimed to develop an artificial neural network (ANN) model to estimate the maximal oxygen uptake (VOmax) based on a multistage 10 m shuttle run test (SRT) in healthy adults. For ANN-based VOmax estimation, 118 healthy Korean adults (59 men and 59 w...

Towards precision cardiometabolic prevention: results from a machine learning, semi-supervised clustering approach in the nationwide population-based ORISCAV-LUX 2 study.

Scientific reports
Given the rapid increase in the incidence of cardiometabolic conditions, there is an urgent need for better approaches to prevent as many cases as possible and move from a one-size-fits-all approach to a precision cardiometabolic prevention strategy ...

Machine Learning to Identify Metabolic Subtypes of Obesity: A Multi-Center Study.

Frontiers in endocrinology
BACKGROUND AND OBJECTIVE: Clinical characteristics of obesity are heterogenous, but current classification for diagnosis is simply based on BMI or metabolic healthiness. The purpose of this study was to use machine learning to explore a more precise ...