AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

CCCTC-Binding Factor

Showing 1 to 10 of 11 articles

Clear Filters

Machine learning approaches infer vitamin D signaling: Critical impact of vitamin D receptor binding within topologically associated domains.

The Journal of steroid biochemistry and molecular biology
The vitamin D-modulated transcriptome of highly responsive human cells, such as THP-1 monocytes, comprises more than 500 genes, half of which are primary targets. Recently, we proposed a chromatin model of vitamin D signaling demonstrating that nearl...

DeepMILO: a deep learning approach to predict the impact of non-coding sequence variants on 3D chromatin structure.

Genome biology
Non-coding variants have been shown to be related to disease by alteration of 3D genome structures. We propose a deep learning method, DeepMILO, to predict the effects of variants on CTCF/cohesin-mediated insulator loops. Application of DeepMILO on v...

Predicting 3D genome folding from DNA sequence with Akita.

Nature methods
In interphase, the human genome sequence folds in three dimensions into a rich variety of locus-specific contact patterns. Cohesin and CTCF (CCCTC-binding factor) are key regulators; perturbing the levels of either greatly disrupts genome-wide foldin...

DeepC: predicting 3D genome folding using megabase-scale transfer learning.

Nature methods
Predicting the impact of noncoding genetic variation requires interpreting it in the context of three-dimensional genome architecture. We have developed deepC, a transfer-learning-based deep neural network that accurately predicts genome folding from...

A sequence-based deep learning approach to predict CTCF-mediated chromatin loop.

Briefings in bioinformatics
Three-dimensional (3D) architecture of the chromosomes is of crucial importance for transcription regulation and DNA replication. Various high-throughput chromosome conformation capture-based methods have revealed that CTCF-mediated chromatin loops a...

InsuLock: A Weakly Supervised Learning Approach for Accurate Insulator Prediction, and Variant Impact Quantification.

Genes
Mapping chromatin insulator loops is crucial to investigating genome evolution, elucidating critical biological functions, and ultimately quantifying variant impact in diseases. However, chromatin conformation profiling assays are usually expensive, ...

CLNN-loop: a deep learning model to predict CTCF-mediated chromatin loops in the different cell lines and CTCF-binding sites (CBS) pair types.

Bioinformatics (Oxford, England)
MOTIVATION: Three-dimensional (3D) genome organization is of vital importance in gene regulation and disease mechanisms. Previous studies have shown that CTCF-mediated chromatin loops are crucial to studying the 3D structure of cells. Although variou...

DARDN: A Deep-Learning Approach for CTCF Binding Sequence Classification and Oncogenic Regulatory Feature Discovery.

Genes
Characterization of gene regulatory mechanisms in cancer is a key task in cancer genomics. CCCTC-binding factor (CTCF), a DNA binding protein, exhibits specific binding patterns in the genome of cancer cells and has a non-canonical function to facili...

Machine learning enables pan-cancer identification of mutational hotspots at persistent CTCF binding sites.

Nucleic acids research
CCCTC-binding factor (CTCF) is an insulator protein that binds to a highly conserved DNA motif and facilitates regulation of three-dimensional (3D) nuclear architecture and transcription. CTCF binding sites (CTCF-BSs) reside in non-coding DNA and are...

Probabilistic and machine-learning methods for predicting local rates of transcription elongation from nascent RNA sequencing data.

Nucleic acids research
Rates of transcription elongation vary within and across eukaryotic gene bodies. Here, we introduce new methods for predicting elongation rates from nascent RNA sequencing data. First, we devise a probabilistic model that predicts nucleotide-specific...