AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Chromatin Immunoprecipitation Sequencing

Showing 21 to 30 of 35 articles

Clear Filters

Cancer classification based on chromatin accessibility profiles with deep adversarial learning model.

PLoS computational biology
Given the complexity and diversity of the cancer genomics profiles, it is challenging to identify distinct clusters from different cancer types. Numerous analyses have been conducted for this propose. Still, the methods they used always do not direct...

Identification of Gene Regulatory Networks from Single-Cell Expression Data.

Methods in molecular biology (Clifton, N.J.)
Single-cell RNAseq is an emerging technology that allows the quantification of gene expression in individual cells. In plants, single-cell sequencing technology has been applied to generate root cell expression maps under many experimental conditions...

Deep learning-based enhancement of epigenomics data with AtacWorks.

Nature communications
ATAC-seq is a widely-applied assay used to measure genome-wide chromatin accessibility; however, its ability to detect active regulatory regions can depend on the depth of sequencing coverage and the signal-to-noise ratio. Here we introduce AtacWorks...

A self-attention model for inferring cooperativity between regulatory features.

Nucleic acids research
Deep learning has demonstrated its predictive power in modeling complex biological phenomena such as gene expression. The value of these models hinges not only on their accuracy, but also on the ability to extract biologically relevant information fr...

Biologically relevant transfer learning improves transcription factor binding prediction.

Genome biology
BACKGROUND: Deep learning has proven to be a powerful technique for transcription factor (TF) binding prediction but requires large training datasets. Transfer learning can reduce the amount of data required for deep learning, while improving overall...

Locating transcription factor binding sites by fully convolutional neural network.

Briefings in bioinformatics
Transcription factors (TFs) play an important role in regulating gene expression, thus identification of the regions bound by them has become a fundamental step for molecular and cellular biology. In recent years, an increasing number of deep learnin...

Multi-Scale Capsule Network for Predicting DNA-Protein Binding Sites.

IEEE/ACM transactions on computational biology and bioinformatics
Discovering DNA-protein binding sites, also known as motif discovery, is the foundation for further analysis of transcription factors (TFs). Deep learning algorithms such as convolutional neural networks (CNN) have been introduced to motif discovery ...

Predicting TF-DNA Binding Motifs from ChIP-seq Datasets Using the Bag-Based Classifier Combined With a Multi-Fold Learning Scheme.

IEEE/ACM transactions on computational biology and bioinformatics
The rapid development of high-throughput sequencing technology provides unique opportunities for studying of transcription factor binding sites, but also brings new computational challenges. Recently, a series of discriminative motif discovery (DMD) ...

DUBStepR is a scalable correlation-based feature selection method for accurately clustering single-cell data.

Nature communications
Feature selection (marker gene selection) is widely believed to improve clustering accuracy, and is thus a key component of single cell clustering pipelines. Existing feature selection methods perform inconsistently across datasets, occasionally even...

TempoMAGE: a deep learning framework that exploits the causal dependency between time-series data to predict histone marks in open chromatin regions at time-points with missing ChIP-seq datasets.

Bioinformatics (Oxford, England)
MOTIVATION: Identifying histone tail modifications using ChIP-seq is commonly used in time-series experiments in development and disease. These assays, however, cover specific time-points leaving intermediate or early stages with missing information....