AIMC Topic: Coronary Artery Disease

Clear Filters Showing 81 to 90 of 525 articles

Coronary artery calcium measurement on attenuation correction computed tomography using artificial intelligence: correlation with coronary flow capacity and prognosis.

European journal of nuclear medicine and molecular imaging
PURPOSE: This study aimed to test whether the coronary artery calcium (CAC) burden on attenuation correction computed tomography (CTac), measured using artificial intelligence (AI-CACac), correlates with coronary flow capacity (CFC) and prognosis.

HAGMN-UQ: Hyper association graph matching network with uncertainty quantification for coronary artery semantic labeling.

Medical image analysis
Coronary artery disease (CAD) is one of the leading causes of death worldwide. Accurate extraction of individual arterial branches from invasive coronary angiograms (ICA) is critical for CAD diagnosis and detection of stenosis. Generating semantic se...

Coronary artery disease detection using deep learning and ultrahigh-resolution photon-counting coronary CT angiography.

Diagnostic and interventional imaging
PURPOSE: The purpose of this study was to evaluate the diagnostic performance of automated deep learning in the detection of coronary artery disease (CAD) on photon-counting coronary CT angiography (PC-CCTA).

Patient-Specific Myocardial Infarction Risk Thresholds From AI-Enabled Coronary Plaque Analysis.

Circulation. Cardiovascular imaging
BACKGROUND: Plaque quantification from coronary computed tomography angiography has emerged as a valuable predictor of cardiovascular risk. Deep learning can provide automated quantification of coronary plaque from computed tomography angiography. We...

Predicting Individual Treatment Effects to Determine Duration of Dual Antiplatelet Therapy After Stent Implantation.

Journal of the American Heart Association
BACKGROUND: After coronary stent implantation, prolonged dual antiplatelet therapy (DAPT) increases bleeding risk, requiring personalization of DAPT duration. The aim of this study was to develop and validate a machine learning model to predict optim...

AngioPy Segmentation: An open-source, user-guided deep learning tool for coronary artery segmentation.

International journal of cardiology
BACKGROUND: Quantitative coronary angiography (QCA) typically employs traditional edge detection algorithms that often require manual correction. This has important implications for the accuracy of downstream 3D coronary reconstructions and computed ...

Development and validation of a machine learning model to predict myocardial blood flow and clinical outcomes from patients' electrocardiograms.

Cell reports. Medicine
We develop a machine learning (ML) model using electrocardiography (ECG) to predict myocardial blood flow reserve (MFR) and assess its prognostic value for major adverse cardiovascular events (MACEs). Using 3,639 ECG-positron emission tomography (PET...