AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Coronary Circulation

Showing 1 to 10 of 23 articles

Clear Filters

Improved robustness for deep learning-based segmentation of multi-center myocardial perfusion cardiovascular MRI datasets using data-adaptive uncertainty-guided space-time analysis.

Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance
BACKGROUND: Fully automatic analysis of myocardial perfusion cardiovascular magnetic resonance imaging datasets enables rapid and objective reporting of stress/rest studies in patients with suspected ischemic heart disease. Developing deep learning t...

Reduced response to regadenoson with increased weight: An artificial intelligence-based quantitative myocardial perfusion study.

Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance
BACKGROUND: There is conflicting evidence regarding the response to a fixed dose of regadenoson in patients with high body weight. The aim of this study was to evaluate the effectiveness of regadenoson in patients with varying body weights using nove...

Deep learning based automated left ventricle segmentation and flow quantification in 4D flow cardiac MRI.

Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance
BACKGROUND: 4D flow MRI enables assessment of cardiac function and intra-cardiac blood flow dynamics from a single acquisition. However, due to the poor contrast between the chambers and surrounding tissue, quantitative analysis relies on the segment...

Estimation of invasive coronary perfusion pressure using electrocardiogram and Photoplethysmography in a porcine model of cardiac arrest.

Computer methods and programs in biomedicine
BACKGROUND: Coronary perfusion pressure (CPP) indicates spontaneous return of circulation and is recommended for high-quality cardiopulmonary resuscitation (CPR). This study aimed to investigate a method for non-invasive estimation of CPP using elect...

Development and validation of a machine learning model to predict myocardial blood flow and clinical outcomes from patients' electrocardiograms.

Cell reports. Medicine
We develop a machine learning (ML) model using electrocardiography (ECG) to predict myocardial blood flow reserve (MFR) and assess its prognostic value for major adverse cardiovascular events (MACEs). Using 3,639 ECG-positron emission tomography (PET...

Coronary artery calcium measurement on attenuation correction computed tomography using artificial intelligence: correlation with coronary flow capacity and prognosis.

European journal of nuclear medicine and molecular imaging
PURPOSE: This study aimed to test whether the coronary artery calcium (CAC) burden on attenuation correction computed tomography (CTac), measured using artificial intelligence (AI-CACac), correlates with coronary flow capacity (CFC) and prognosis.

Feasibility exploration of myocardial blood flow synthesis from a simulated static myocardial computed tomography perfusion via a deep neural network.

Journal of X-ray science and technology
BACKGROUND:  Myocardial blood flow (MBF) provides important diagnostic information for myocardial ischemia. However, dynamic computed tomography perfusion (CTP) needed for MBF involves multiple exposures, leading to high radiation doses.